AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Stress-induced tailoring of energy storage properties in lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ferroelectric bulk ceramics

Juliana G. Maier( )Ahmed GadelmawlaNeamul H. KhansurKyle G. Webber
Department of Materials Science and Engineering, Friedrich-Alexander-Universitat Erlangen-Nürnberg (FAU), Martensstraße 5, 91058, Erlangen, Germany
Show Author Information

Graphical Abstract

Abstract

In this study, the stress-modulated energy storage properties of lead-free polycrystalline Ba0.85Ca0.15Zr0.1Ti0.9O3 was investigated as a function of temperature from 25 ℃ to 55 ℃. The externally applied uniaxial compressive stress of −160 MPa increased the recoverable energy storage density by 226% to a maximum value of 274 mJ/cm3, in addition to enhancing the energy storage efficiency by approximately 10% to a value of 88.2%. The macroscopic mechanical constitutive behavior is presented as well as the stress-dependent dielectric and ferroelectric properties and the Rayleigh behavior in order to elucidate the effect of stress on the energy storage properties. Importantly, the stress-induced tailoring of energy storage performance can be utilized for other nonlinear dielectric ceramics to tune their extrinsic polarization mechanisms to significantly enhance the recoverable energy density and reduce the hysteretic losses.

References

[1]
Nations U. Transforming our world: the 2030 agenda for sustainable development. 2015.
[2]

Hao X. A review on the dielectric materials for high energy-storage application. J Adv Dielectr 2013;3:1330001. https://doi.org/10.1142/S2010135X13300016.

[3]

Hao X, Zhai J, Kong LB, Xu Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci 2014;63:1–57. https://doi.org/10.1016/j.pmatsci.2014.01.002.

[4]

Watson J, Castro G. A review of high-temperature electronics technology and applications. J Mater Sci Mater Electron 2015;26:9226–35. https://doi.org/10.1007/s10854-015-3459-4.

[5]

Li Q, Yao F-Z, Liu Y, Zhang G, Wang H, Wang Q. High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res 2018;48:219–43. https://doi.org/10.1146/annurev-matsci-070317-124435.

[6]

Liu Z, Lu T, Ye J, Wang G, Dong X, Withers R, Liu Y. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3:1800111. https://doi.org/10.1002/admt.201800111.

[7]

Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, Zhang S-T, Nan B, Tan H, Ye Z-G. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C 2020;8:16648–67. https://doi.org/10.1039/D0TC04381H.

[8]

Zhou Z, Yang Q, Liu M, Zhang Z, Zhang X, Sun D, Nan T, Sun N, Chen X. Antiferroelectric materials, applications and recent progress on multiferroic heterostructures. Spin 2015;5:1530001. https://doi.org/10.1142/S2010324715300017.

[9]

Laghari JR, Sarjeant WJ. Energy-storage pulsed-power capacitor technology. IEEE Trans Power Electron 1992;7:251–7. https://doi.org/10.1109/63.124597.

[10]

Patel S, Chauhan A, Vaish R. Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching. Mater Res Express 2014;1:45502. https://doi.org/10.1088/2053-1591/1/4/045502.

[11]

Burn I, Smyth DM. Energy storage in ceramic dielectrics. J Mater Sci 1972;7: 339–43. https://doi.org/10.1007/bf00555636.

[12]

Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan MT, Liu H. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017;29. https://doi.org/10.1002/adma.201601727. Deerfield Beach, Fla.

[13]

Zhao P, Cai Z, Wu L, Zhu C, Li L, Wang X. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J Adv Ceram 2021;10: 1153–93. https://doi.org/10.1007/s40145-021-0516-8.

[14]

Schader FH, Morozov M, Wefring ET, Grande T, Webber KG. Mechanical stability of piezoelectric properties in ferroelectric perovskites. J Appl Phys 2015;117:1–8. https://doi.org/10.1063/1.4919815.

[15]
Dielectrics and insulators. In: Moulson AJ, Herbert JM, editors. Electroceramics, 243–337. Chichester, UK: John Wiley & Sons, Ltd; 2003.
[16]
Technische Keramik. In: Telle R, editor. Keramik, 783–946. Springer Berlin Heidelberg; 2007.
[17]

Ahn CW, Hong C-H, Choi B-Y, Kim H-P, Han H-S, Hwang Y, Jo W, Wang K, Li J-F, Lee J-S, Kim IW. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J Kor Phys Soc 2016;68:1481–94. https://doi.org/10.3938/jkps.68.1481.

[18]

Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J. Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective. J Electroceram 2012;29:71–93. https://doi.org/10.1007/s10832-012-9742-3.

[19]

Höfling M, Steiner S, Hoang A-P, Seo I-T, Frömling T. Optimizing the defect chemistry of Na1/2Bi1/2TiO3-based materials: paving the way for excellent high temperature capacitors. J Mater Chem C 2018;6:4769–76. https://doi.org/10.1039/C8TC01010B.

[20]

Ren P, He J, Sun L, Frömling T, Wan Y, Yang S, Cao X, Wang B, Yang J, Zhao G. High-temperature dielectrics based on (1-y)[(1-x)Bi0.5Na0.5TiO3-xBiAlO3]- yCaZrO3 ternary system with stable permittivity and low dielectric loss in a wide temperature range. J Eur Ceram Soc 2019;39:4160–7. https://doi.org/10.1016/j.jeurceramsoc.2019.05.042.

[21]

Liu X, Zhu J, Li Y, Yang T, Hao X, Gong W. High-performance PbZrO3-based antiferroelectric multilayer capacitors based on multiple enhancement strategy. Chem Eng J 2022;5:136729. https://doi.org/10.1016/j.cej.2022.136729.

[22]

Randall CA. Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J Ceram Soc Jpn 2001;109:S2–6. https://doi.org/10.2109/jcersj.109.S2.

[23]

Hu B, Fan H, Ning L, Gao S, Yao Z, Li Q. Enhanced energy-storage performance and dielectric temperature stability of (1-x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram Int 2018;44:10968–74. https://doi.org/10.1016/j.ceramint.2018.03.176.

[24]

Yan B, Fan H, Wang C, Zhang M, Yadav AK, Zheng X, Wang H, Du Z. Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ codoped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram Int 2020;46:281–8. https://doi.org/10.1016/j.ceramint.2019.08.261.

[25]

Yang F, Li Q, Zhang A, Jia Y, Sun Y, Wang W, Fan H. High energy storage density and temperature stable dielectric properties of (1-x) Bi0.5(Na0.82K0.18)0.5Ti0.99(Y0.5Nb0.5)0.01O3-xNaNbO3 ceramics. J Alloys Compd 2022;925:166782. https://doi.org/10.1016/j.jallcom.2022.166782.

[26]

Sun H, Wang X, Sun Q, Zhang X, Ma Z, Guo M, Sun B, Zhu X, Liu Q, Lou X. Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics. J Eur Ceram Soc 2020;40:2929–35. https://doi.org/10.1016/j.jeurceramsoc.2020.03.012.

[27]

Luo N, Han K, Cabral MJ, Liao X, Zhang S, Liao C, Zhang G, Chen X, Feng Q, Li J-F, Wei Y. Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat Commun 2020;11:4824. https://doi.org/10.1038/s41467-020-18665-5.

[28]

Xu K, Yang P, Peng W, Li L. Temperature-stable MgO-doped BCZT lead-free ceramics with ultra-high energy storage efficiency. J Alloys Compd 2020;829:154516. https://doi.org/10.1016/j.jallcom.2020.154516.

[29]

Neusel C, Schneider GA. Size-dependence of the dielectric breakdown strength from nano- to millimeter scale. J Mech Phys Solid 2014;63:201–13. https://doi.org/10.1016/j.jmps.2013.09.009.

[30]

Fan P, Zhang S-T, Xu J, Zang J, Samart C, Zhang T, Tan H, Salamon D, Zhang H, Liu G. Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics. J Mater Chem C 2020;8: 5681–91. https://doi.org/10.1039/D0TC00589D.

[31]

Dittmer R, Webber KG, Aulbach E, Jo W, Tan X, Rödel J. Optimal working regime of lead-zirconate-titanate for actuation applications. Sensor Actuator Phys 2013;189:187–94. https://doi.org/10.1016/j.sna.2012.09.015.

[32]

Chaplya PM, Carman GP. Dielectric and piezoelectric response of lead zirconate-lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion. J Appl Phys 2001;90:5278–86. https://doi.org/10.1063/1.1410330.

[33]

Zhou D, Kamlah M, Munz D. Effects of uniaxial prestress on the ferroelectric hysteretic response of soft PZT. J Eur Ceram Soc 2005;25:425–32. https://doi.org/10.1016/j.jeurceramsoc.2004.01.016.

[34]

Humburg HI, Acosta M, Jo W, Webber KG, Rödel J. Stress-dependent electromechanical properties of doped (Ba1−xCax)(ZryTi1-y)O3. J Eur Ceram Soc 2015;35:1209–17. https://doi.org/10.1016/j.jeurceramsoc.2014.10.016.

[35]

Viehland D. Effect of uniaxial stress upon the electromechanical properties of various piezoelectric ceramics and single crystals. J Am Ceram Soc 2006;89: 775–85. https://doi.org/10.1111/j.1551-2916.2005.00879.x.

[36]

Geiger PT, Clemens O, Khansur NH, Hinterstein M, Sahini MG, Grande T, Tung P, Daniels JE, Webber KG. Nonlinear mechanical behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and in situ stress dependent synchrotron X-ray diffraction study. Solid State Ionics 2017;300:106–13. https://doi.org/10.1016/j.ssi.2016.11.027.

[37]

Sikder B, Chanda A, Goswami S, Bhattacharya D, Velaga S. Influence of spin-state transition on structural and other physical properties in Ba0.5Sr0.5Co0.8Fe0.2O3−δ ceramic. Mater Chem Phys 2019;236:121770. https://doi.org/10.1016/j.matchemphys.2019.121770.

[38]

Viehland D, Jang SJ, Cross LE, Wuttig M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 1990;68:2916–21. https://doi.org/10.1063/1.346425.

[39]

Jin L, Li F, Zhang S. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 2014;97: 1–27. https://doi.org/10.1111/jace.12773.

[40]

Schader FH, Khakpash N, Rossetti GA, Webber KG. Phase transitions in BaTiO3 under uniaxial compressive stress: experiments and phenomenological analysis. J Appl Phys 2017;121:64109. https://doi.org/10.1063/1.4976060.

[41]

Dittmer R, Webber KG, Aulbach E, Jo W, Tan X, Rödel J. Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress. Acta Mater 2013;61:1350–8. https://doi.org/10.1016/j.actamat.2012.11.012.

[42]

Wang K, Yao F-Z, Koruza J, Cheng L-Q, Schader FH, Zhang M-H, Rödel J, Li J-F, Webber KG. Electromechanical properties of CaZrO3 modified (K,Na)NbO3 -based lead-free piezoceramics under uniaxial stress conditions. J Am Ceram Soc 2017;100:2116–22. https://doi.org/10.1111/jace.14661.

[43]

Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Integrated Ferroelectrics Int J 1998;61:1267–324. https://doi.org/10.1088/0034-4885/61/9/002.

[44]

Patel S, Yadav H, Kumar M. Effect of uniaxial stress on energy harvesting, storage and electrocaloric performance of BZT ceramics. J Korean Ceram Soc 2021;58:437–44. https://doi.org/10.1007/s43207-021-00118-4.

[45]

Chauhan A, Patel S, Vaish R. Mechanical confinement for improved energy storage density in BNT-BT-KNN lead-free ceramic capacitors. AIP Adv 2014;4: 87106. https://doi.org/10.1063/1.4892608.

[46]

Park D-H, Jung Y-G, Paik U. Evaluation of residual stress in BaTiO3-based Ni-MLCCs with X7R characteristics. J Mater Sci Mater Electron 2004;15:253–9. https://doi.org/10.1023/B:JMSE.0000012464.54455.d2.

[47]
Rice RW. The compressive strength of ceramics. In: Kriegel WW, Palmour H, editors. Ceramics in severe environments, vols. 195–229. Boston, MA: Springer US; 1971.
[48]

Ge J, Remiens D, Costecalde J, Chen Y, Dong X, Wang G. Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations. Appl Phys Lett 2013;103:162903. https://doi.org/10.1063/1.4825336.

[49]

Webber KG, Vögler M, Khansur NH, Kaeswurm B, Daniels JE, Schader FH. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater Struct 2017;26:63001. https://doi.org/10.1088/1361-665X/aa590c.

[50]

Acosta M, Novak N, Rossetti GA, Rödel J. Mechanisms of electromechanical response in (1−x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 2015;107:142906. https://doi.org/10.1063/1.4932654.

[51]

Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 2009;103:257602. https://doi.org/10.1103/PhysRevLett.103.257602.

[52]

Keeble DS, Benabdallah F, Thomas PA, Maglione M, Kreisel J. Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl Phys Lett 2013;102:92903. https://doi.org/10.1063/1.4793400.

[53]

Sun Z, Ma C, Liu M, Cui J, Lu L, Lu J, Lou X, Jin L, Wang H, Jia C-L. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv. Mater. (Deerfield Beach, Fla.) 2017:29. https://doi.org/10.1002/adma.201604427.

[54]

Acosta M, Khakpash N, Someya T, Novak N, Jo W, Nagata H, Rossetti GA, Rödel J. Origin of the large piezoelectric activity in (1−x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 ceramics. Phys Rev B 2015;91:19. https://doi.org/10.1103/PhysRevB.91.104108.

[55]

Gao J, Xue D, Liu W, Zhou C, Ren X. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 2017;6:24. https://doi.org/10.3390/act6030024.

[56]

Ehmke MC, Ehrlich SN, Blendell JE, Bowman KJ. Phase coexistence and ferroelastic texture in high strain (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics. J Appl Phys 2012;111:124110. https://doi.org/10.1063/1.4730342.

[57]
Elementary solid state science. In: Moulson AJ, Herbert JM, editors. Electroceramics, 5–93. Chichester, UK: John Wiley & Sons, Ltd; 2003.
[58]

Choudhury S, Li YL, Krill III C, Chen LQ. Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations. Acta Mater 2007;55:1415–26. https://doi.org/10.1016/j.actamat.2006.09.048.

[59]

Su Y, Liu N, Weng GJ. A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta Mater 2015;87: 293–308. https://doi.org/10.1016/j.actamat.2015.01.015.

[60]

Yan M, Xiao Z, Ye J, Yuan X, Li Z, Bowen C, Zhang Y, Zhang D. Porous ferroelectric materials for energy technologies: current status and future perspectives. Energy Environ Sci 2021;14:6158–90. https://doi.org/10.1039/d1ee03025f.

[61]

Damjanovic D. A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl Phys Lett 2010;97:62906. https://doi.org/10.1063/1.3479479.

[62]

Noguchi Y, Miwa I, Goshima Y, Miyayama M. Defect control for large remanent polarization in bismuth titanate ferroelectrics –doping effect of higher-valent cations. Jpn J Appl Phys 2000;39:L1259. https://doi.org/10.1143/JJAP.39.L1259.

[63]

Guo H, Voas BK, Zhang S, Zhou C, Ren X, Beckman SP, Tan X. Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3. Phys Rev B 2014;90. https://doi.org/10.1103/PhysRevB.90.014103.

[64]
Saurabh N, Patel S. Effect of stress on ferroelectric, energy storage and harvesting properties of 0.4BZT-0.6BCT ceramics. In: Reddy ANR, Marla D, Favorskaya MN, Satapathy SC, editors. Intelligent manufacturing and energy sustainability, vols. 57–65. Singapore: Springer Singapore; 2022.
[65]

Saurabh N, Patel S. Enhanced energy conversion and storage properties of Sn-doped BaTiO3 bulk ceramics using compressive stresses. J Electron Mater 2022;51:1297–310. https://doi.org/10.1007/s11664-021-09401-w.

[66]

Zhuo F, Eckstein UR, Khansur NH, Dietz C, Urushihara D, Asaka T, Kakimoto K, Webber KG, Fang X, Rödel J. Temperature-induced changes of the electrical and mechanical properties of aerosol-deposited BaTiO3 thick films for energy storage applications. J Am Ceram Soc 2022;105:4108–21. https://doi.org/10.1111/jace.18377.

[67]

Sadl M, Nadaud K, Bah M, Levassort F, Eckstein U, Khansur NH, Webber KG, Ursic H. Multifunctional energy storage and piezoelectric properties of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 thick films on stainless-steel substrates. J Phys: Energy 2022;4:24004. https://doi.org/10.1088/2515-7655/ac5fd5.

[68]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J-F, Zhang S. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72–108. https://doi.org/10.1016/j.pmatsci.2018.12.005.

[69]

Wang X, Yang T, Shen J. High-energy storage performance in (Pb0.98La0.02)(Zr0.45Sn0.55)0.995O3 AFE thick films fabricated via a rolling process. J Am Ceram Soc 2016;99:3569–72. https://doi.org/10.1111/jace.14406.

[70]

Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L-Q, Lin Y-H, Nan C-W. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science (New York, NY) 2019;365:578–82. https://doi.org/10.1126/science.aaw8109.

[71]

Li YZ, Wang ZJ, Bai Y, Zhang ZD. High energy storage performance in Ca-doped PbZrO3 antiferroelectric films. J Eur Ceram Soc 2020;40:1285–92. https://doi.org/10.1016/j.jeurceramsoc.2019.11.063.

[72]

Huang Y, Shu L, Zhang S, Zhou Z, Cheng Y-Y-S, Peng B, Liu L, Zhang Y, Wang X, Li J-F. Simultaneously achieved high-energy storage density and efficiency in (K,Na)NbO3 -based lead-free ferroelectric films. J Am Ceram Soc 2021;104: 4119–30. https://doi.org/10.1111/jace.17808.

[73]

Hao X, Wang Y, Yang J, An S, Xu J. High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films. J Appl Phys 2012;112:114111. https://doi.org/10.1063/1.4768461.

[74]

Zhao Y, Hao X, Zhang Q. Energy-storage properties and electrocaloric effect of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl Mater Interfaces 2014;6:11633–9. https://doi.org/10.1021/am502415z.

[75]

Sadl M, Condurache O, Bencan A, Dragomir M, Prah U, Malic B, Deluca M, Eckstein U, Hausmann D, Khansur NH, Webber KG, Ursic H. Energy-storage-efficient 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thick films integrated directly onto stainless steel. Acta Mater 2021;221:117403. https://doi.org/10.1016/j.actamat.2021.117403.

[76]

Chen L, Deng S, Liu H, Wu J, Qi H, Chen J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat Commun 2022;13:3089. https://doi.org/10.1038/s41467-022-30821-7.

[77]

You Y, Guo X. Grain size engineering enhanced dielectric, ferroelectric and energy storage properties in SnO2 modified BCZT lead-free ceramics. J Alloys Compd 2022;918:165557. https://doi.org/10.1016/j.jallcom.2022.165557.

[78]
Ehmke MC. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics. An Arbor, Michigan: ProQuest; 2014.
[79]

Hanani Z, Mezzane D, Amjoud M, Gagou Y, Hoummada K, Perrin C, Razumnaya AG, Kutnjak Z, Bouzina A, Marssi ME, Gouné M, Rožič B. Structural, dielectric, and ferroelectric properties of lead-free BCZT ceramics elaborated by low-temperature hydrothermal processing. J Mater Sci Mater Electron 2020;31:10096–104. https://doi.org/10.1007/s10854-020-03555-9.

[80]

Gadelmawla A, Dobesh D, Eckstein U, Grübl O, Ehmke M, Cicconi MR, Khansur NH, de Ligny D, Webber KG. Influence of stress on the electromechanical properties and the phase transitions of lead-free (1 − x) Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3. J Mater Sci 2022;57:16581–99. https://doi.org/10.1007/s10853-022-07685-9.

[81]

Brandt DRJ, Acosta M, Koruza J, Webber KG. Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-xBCT piezoceramics. J Appl Phys 2014;115:204107. https://doi.org/10.1063/1.4879395.

[82]

Schäufele AB, Heinz Härdtl K. Ferroelastic properties of lead zirconate titanate ceramics. J Am Ceram Soc 1996;79:2637–40. https://doi.org/10.1111/j.1151-2916.1996.tb09027.x.

[83]

Martin A, Uršič H, Rojac T, Webber KG. Direct observation of the stress-induced domain structure in lead-free (Na1/2Bi1/2)TiO3 -based ceramics. Appl Phys Lett 2019;114:52901. https://doi.org/10.1063/1.5084255.

[84]

Muñoz-Saldaña J, Schneider GA, Eng LM. Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy. Surf Sci 2001;480:L402–10. https://doi.org/10.1016/S0039-6028(01)00992-X.

[85]

Picht G, Webber KG, Zhang Y, Kungl H, Damjanovic D, Hoffmann MJ. Critical mechanical and electrical transition behavior of BaTiO3 : the observation of mechanical double loop behavior. J Appl Phys 2012;112:124101. https://doi.org/10.1063/1.4767059.

[86]

Martin A, Kakimoto K, Hatano K, Doshida Y, Webber KG. Ferroelastic behavior across the orthorhombic-to-tetragonal phase transition region of NKN-based lead-free ferroelectrics. J Appl Phys 2017;122:204102. https://doi.org/10.1063/1.4989759.

[87]

Franzbach DJ, Seo Y-H, Studer AJ, Zhang Y, Glaum J, Daniels JE, Koruza J, Benčan A, Malič B, Webber KG. Electric-field-induced phase transitions in co-doped Pb(Zr1-xTix)O3 at the morphotropic phase boundary. Sci Technol Adv Mater 2014;15:15010. https://doi.org/10.1088/1468-6996/15/1/015010.

[88]

Wang Z, Webber KG, Hudspeth JM, Hinterstein M, Daniels JE. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO3. Appl Phys Lett 2014;105:161903. https://doi.org/10.1063/1.4898573.

[89]

Liu Y, Liu H, Sun S, Wang L, Chen J. Direct observation of electric field-induced tetragonal-orthorhombic phase transition in KNN-based piezoelectric ceramics via in-situ synchrotron diffraction. Scripta Mater 2022;207:114283. https://doi.org/10.1016/j.scriptamat.2021.114283.

[90]

Franzbach DJ, Gu YJ, Chen LQ, Webber KG. Electric field-induced tetragonal to orthorhombic phase transitions in [110]c-oriented BaTiO3 single crystals. Appl Phys Lett 2012;101:232904. https://doi.org/10.1063/1.4769368.

[91]

Damjanovic D. Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J Appl Phys 1997;82:1788–97. https://doi.org/10.1063/1.365981.

[92]

Ehmke MC, Daniels J, Glaum J, Hoffman M, Blendell JE, Bowman KJ. Reduction of the piezoelectric performance in lead-free (1-x)Ba(Zr0.2Ti0.8)O3- x(Ba0.7Ca0.3)TiO3 piezoceramics under uniaxial compressive stress. J Appl Phys 2012;112:114108. https://doi.org/10.1063/1.4768273.

[93]

Morozov MI, Einarsrud M-A, Tolchard JR, Geiger PT, Webber KG, Damjanovic D, Grande T. In-situ structural investigations of ferroelasticity in soft and hard rhombohedral and tetragonal PZT. J Appl Phys 2015;118: 164104. https://doi.org/10.1063/1.4934615.

[94]

Seo Y-H, Franzbach DJ, Koruza J, Benčan A, Malič B, Kosec M, Jones JL, Webber KG. Nonlinear stress-strain behavior and stress-induced phase transitions in soft Pb(Zr1−xTix)O3 at the morphotropic phase boundary. Phys Rev B 2013;87:1040. https://doi.org/10.1103/PhysRevB.87.094116.

Journal of Materiomics
Pages 673-682
Cite this article:
Maier JG, Gadelmawla A, Khansur NH, et al. Stress-induced tailoring of energy storage properties in lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ferroelectric bulk ceramics. Journal of Materiomics, 2023, 9(4): 673-682. https://doi.org/10.1016/j.jmat.2022.12.010

148

Views

8

Crossref

7

Web of Science

9

Scopus

Altmetrics

Received: 14 November 2022
Revised: 27 December 2022
Accepted: 31 December 2022
Published: 10 February 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return