Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Creation and erasure of polar bubble domains in PbTiO3 films by mechanical stress and light illuminations

Xingchen Zhanga,1Hongying Chena,c,1Guo Tiana()Wenda YangaZhen FanaZhipeng HouaDeyang ChenaMin ZengaMinghui QinaJinwei GaoaXingsen Gaoa()Jun-Ming Liub
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
Laboratory of Solid-State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China

1 These authors contributed equally.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The controllable manipulation of polar topological structures (e.g. skyrmion bubble) in ferroelectric materials have been considered as a cornerstone for future programmable nano-electronics. Here, we present the effective creation and erasure of polar bubble states PbTiO3 (PTO) multilayers trigged by mechanical stress and light illumination, respectively. It was found that applying atomic force microscope (AFM) tip force can induced formation of nanoscale bubble domains from the initial monodomain state. Moreover, the created bubble domain can be eliminated by exposure to ultraviolet or infrared light illumination. The above results can be understood by modulation of depolarization screening charges and bias fields, as reflected by scanning Kelvin potential microscopic (SKPM) observations, whereby the flexoelectric effect from the tip force tends to remove the screening charges on top surface and modulate the bias field that favors the formation of bubble state while light illumination tends to recover the screen charges and favor the monodomain state. The results provide a good example for multi-field manipulation of polar topologies, which might create a new avenue towards the immerging new concept electronic devices.

References

[1]

Damodaran AR, Clarkson JD, Hong Z, Liu H, Yadav AK, Nelson CT, et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat Mater 2017;16:1003–9. https://doi.org/10.1038/nmat4951.

[2]

Yadav AK, Nguyen KX, Hong Z, GarcíaFernández P, AguadoPuente P, Nelson CT, et al. Spatially resolved steady-state negative capacitance. Nature 2019;565:468–71. https://doi.org/10.1038/s41586-018-0855-y.

[3]

Nahas Y, Prokhorenko S, Fischer J, Xu B, Carrétéro C, Prosandeev S, et al. Inverse transition of labyrinthine domain patterns in ferroelectric thin films. Nature 2020;577:47–51. https://doi.org/10.1038/s41586-019-1845-4.

[4]

Tang YL, Zhu YL, Ma XL, Borisevich AY, Morozovska AN, Eliseev EA, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015;348:547–51. https://doi.org/10.1126/science.1259869.

[5]

Wang YJ, Feng YP, Zhu YL, Tang YL, Yang LX, Zou MJ, et al. Polar meron lattice in strained oxide ferroelectrics. Nat Mater 2020;19:881–6. https://doi.org/10.1038/s41563-020-0694-8.

[6]

Han L, Addiego C, Prokhorenko S, Wang M, Fu H, Nahas Y, et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 2022;603:63–7. https://doi.org/10.1038/s41586-021-04338-w.

[7]

Bakaul SR, Prokhorenko S, Zhang Q, Nahas Y, Hu Y, PetfordLong A, et al. Freestanding ferroelectric bubble domains. Adv Mater 2021;33:2105432. https://doi.org/10.1002/adma.202105432.

[8]

Gonçalves MAP, Escorihuela-Sayalero C, GarcaFernández P, Junquera J, Íñiguez J. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci Adv 2019;5 eaau7023. https://doi.org/10.1126/sciadv.aau7023.

[9]

Das S, Tang YL, Hong Z, Gonçalves MAP, McCarter MR, Klewe C, et al. Observation of room-temperature polar skyrmions. Nature 2019;568:368–72. https://doi.org/10.1038/s41586-019-1092-8.

[10]

Yadav AK, Nelson CT, Hsu SL, Hong Z, Clarkson JD, Schlepütz CM, et al. Observation of polar vortices in oxide superlattices. Nature 2016;530:198–201. https://doi.org/10.1038/nature16463.

[11]

Das S, Hong Z, Stoica VA, Gonçalves MAP, Shao YT, Parsonnet E, et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat Mater 2021;20:194–201. https://doi.org/10.1038/s41563-020-00818-y.

[12]

Zubko P, Wojdeł J, Hadjimichael M, FernandezPena S, Sené A, Luk’yanchuk I, et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 2016;534:524–8. https://doi.org/10.1038/nature17659.

[13]

Yang W, Tian G, Zhang Y, Xue F, Zheng D, Zhang L, et al. Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects. Nat Commun 2021;12:1306. https://doi.org/10.1038/s41467-021-21521-9.

[14]

Balke N, Winchester B, Ren W, Chu YH, Morozovska AN, Eliseev EA, et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat Phys 2012;8:81–8. https://doi.org/10.1038/nphys2132.

[15]

Li Q, Stoica VA, Paściak M, Zhu Y, Yuan Y, Yang T, et al. Subterahertz collective dynamics of polar vortices. Nature 2021;592:376–80. https://doi.org/10.1038/s41586-021-03342-4.

[16]

Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat Nanotechnol 2018;13:947–52. https://doi.org/10.1038/s41565-018-0204-1.

[17]

Li Q, Stoica VA, Paściak M, Zhu Y, Yuan Y, Yang T, et al. Subterahertz collective dynamics of polar vortices. Nature 2021;592:376–80. https://doi.org/10.1038/s41586-021-03342-4.

[18]

Yang T, Dai C, Li Q, Wen H, Chen LQ. Subterahertz collective dynamics of polar vortices. Phys Rev B 2021;103:L220303. https://doi.org/10.1103/PhysRevB.105.224101.

[19]

Qian W, Wu H, Yang Y. Ferroelectric BaTiO3 based multi-effects coupled materials and devices. Adv. Electron. Mater. 2022;8:2200190. https://doi.org/10.1002/aelm.202200190.

[20]

Kornev I, Fu HX, Bellaiche L. Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. Phys Rev Lett 2004;93(19):196104. https://doi.org/10.1103/PhysRevLett.93.196104.

[21]

Xie L, Li LZ, Heikes CA, Zhang Y, Hong ZJ, Gao P, et al. Giant ferroelectric polarization in ultrathin ferroelectrics via boundary-condition engineering. Adv Mater 2017;29:1701475. https://doi.org/10.1002/adma.201701475.

[22]

Khestanova E, Dix N, Fina I, Scigaj M, Rebled JM, Magén C, et al. Untangling electrostatic and strain effects on the polarization of ferroelectric superlattices. Adv Funct Mater 2016;26:6446–53. https://doi.org/10.1002/adfm.201602084.

[23]

Nelson CT, Winchester B, Zhang Y, Kim S, Melville A, Adamo C, et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett 2011;11(2):828–34. https://doi.org/10.1021/nl1041808.

[24]

Lu H, Wang B, Li T, Lipatov A, Lee H, Rajapitamahuni A, et al. Nanodomain engineering in ferroelectric capacitors with graphene electrodes. Nano Lett 2016;16(10):6460–6. https://doi.org/10.1021/acs.nanolett.6b02963.

[25]

Lu H, Kim DJ, Bark CW, Ryu S, Eom CB, Tsymbal EY, et al. Mechanically-induced resistive switching in ferroelectric tunnel junctions. Nano Lett 2012;12(12):6289–92. https://doi.org/10.1021/nl303396n.

[26]

Chen Z, Huang Q, Wang F, Ringer SP, Luo H, Liao X, et al. Stress-induced reversible and irreversible ferroelectric domain switching. Appl Phys Lett 2018;112:152901. https://doi.org/10.1063/1.5020534.

[27]

Stoica VA, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat Mater 2019;18:377–83. https://doi.org/10.1038/s41563-019-0311-x.

[28]

Zhang Q, Prokhorenko S, Nahas Y, Xie L, Bellaiche L, Gruverman A, et al. Deterministic switching of ferroelectric bubble nanodomains. Adv Funct Mater 2019;29:1808573. https://doi.org/10.1002/adfm.201808573.

[29]

Liu J, Chen W, Wu M, Sun F, Huang X, Zheng Y, et al. Bidirectional mechanical switching window in ferroelectric thin films predicted by first-principle-based simulations. npj Comput Mater 2022;8:137. https://doi.org/10.1038/s41524-022-00829-0.

[30]

Lu H, Bark CW, Esque de Los Ojos D, Alcala J, Eom CB, Catalan G, et al. Mechanical writing of ferroelectric polarization. Science 2012;335:59. https://doi.org/10.1126/science.1218693.

[31]

Li Z, Wang Y, Tian G, Li P, Zhao L, Zhang F, et al. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci Adv 2017;3:e1700919. https://doi.org/10.1126/sciadv.1700919.

[32]

Govinden V, Rijal S, Zhang Q, Nahas Y, Bellaiche L, Valanoor N, et al. Stability of ferroelectric bubble domains. Phys Rev Mater 2023;7:L011401.

[33]

Wang JY, Liu G, Sando D, Nagarajan V, J, Seidel. Morphology-dependent photo-induced polarization recovery in ferroelectric thin films. Appl Phys Lett 2017;111:092902. https://doi.org/10.1063/1.4990839.

[34]

Pal S, Swain AB, Biswas PP, Murugavel P. Photoferroelectric phenomena in ferroelectric oxides and a Rayleigh analysis. Phys. Rev. Mater. 2020;4:064415. https://doi.org/10.1103/PhysRevMaterials.4.064415.

[35]

Zhao D, Lenz T, Gelinck GH, Groen P, Damjanovic D, de Leeuw DM, et al. Depolarization of multidomain ferroelectric materials. Nat Commun 2019;10:2547. https://doi.org/10.1038/s41467-019-10530-4.

[36]

Lim KG, Chew KH, Ong LH, Lwata M. Modulated internal electric field, dielectric susceptibility and polarization in ferroelectric superlattices. Ceram Int 2013;39:S307. https://doi.org/10.1016/j.ceramint.2012.10.083.

[37]

Kalinin SV, Kim Y, Fong DD, Morozovska AN. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep Prog Phys 2018;81(3). https://doi.org/10.1088/1361-6633/aa915a.

Journal of Materiomics
Pages 626-633
Cite this article:
Zhang X, Chen H, Tian G, et al. Creation and erasure of polar bubble domains in PbTiO3 films by mechanical stress and light illuminations. Journal of Materiomics, 2023, 9(4): 626-633. https://doi.org/10.1016/j.jmat.2023.01.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return