Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Co-doping strategy enhanced the ionic conductivity and excellent lithium stability of garnet-type Li7La3Zr2O12 electrolyte in all solid-state lithium batteries

Ziqiang Xua,bXin HuaBowen FuaKashif KhanaJintian Wua,cTeng LiaHaiping ZhouaZixuan Fanga()Mengqiang Wua,b()
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
Yangtze Delta Region Institute (HuZhou), University of Electronic Science and Technology of China, Huzhou, 313001, Zhejiang, China
School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Garnet-type Li7La3Zr2O12 (LLZO) is one of the most promising solid-state electrolytes (SSEs). However, the application of LLZO is limited by structural instability, low ionic conductivity, and poor lithium stability. To obtain a garnet-type solid electrolyte with a stable structure and high ionic conductivity, a series of TaCe co-doping cubic Li6·4La3ZrTa0.6CeO12 (LLZTCO, x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30) electrolytes were successfully synthesized through conventional solid-phase method. The Ta5+ doping can introduce more lithium vacancies and effectively maintain the stability of the cubic phase. The Ce4+ with a larger ionic radius is introduced into the lattice to widen the Li+ migration bottleneck size, which significantly increased the ionic conductivity to 1.05 × 10−3 S/cm. It also shows excellent stability to lithium metal by the optimization of Li+ transport channel. Li||LLZTCO||Li symmetric cells can cycle stably for more than 6 000 h at a current density of 0.1 mA/cm2 without any surface modifications. The commercialization potential of LLZTCO samples in all solid-state lithium batteries (ASSLBs) is confirmed by the prepared LiFePO4||LLZTCO||Li cells with a capacity retention rate of 98% after 100 cycles at 0.5C. This new co-doping method presents a practical solution for the realization of high-performance ASSLBs.

References

[1]

Fu K, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ Sci 2017;10(7):1568–75. https://doi.org/10.1039/c7ee01004d.

[2]

Janek J, Zeier WG. A solid future for battery development. Nat Energy 2016;1(9):1–4. https://doi.org/10.1038/nenergy.2016.141.

[3]

Samson AJ, Hofstetter K, Bag S, Thangadurai V. A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci 2019;12(10):2957–75. https://doi.org/10.1039/c9ee01548e.

[4]

Yu X, Manthiram A. Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ Sci 2018;11(3):527–43. https://doi.org/10.1039/c7ee02555f.

[5]

Bruck AM, Cama CA, Gannett CN, Marschilok AC, Takeuchi ES, Takeuchi KJ. Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry. Inorg Chem Front 2016;3(1):26–40. https://doi.org/10.1039/c5qi00247h.

[6]

Li S, Li N, Sun C. A flexible three-dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries. Inorg Chem Front 2021;8(2):361–7. https://doi.org/10.1039/d0qi01159b.

[7]

Strauss F, Teo JH, Janek J, Brezesinski T. Investigations into the superionic glass phase of Li4PS4I for improving the stability of high-loading all-solid-state batteries. Inorg Chem Front 2020;7(20):3953–60. https://doi.org/10.1039/d0qi00758g.

[8]

Ji X, Zhang Y, Cao M, Gu Q, Wang H, Yu J, et al. Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. J Adv Ceram 2022;11(6):835–61. https://doi.org/10.1007/s40145-022-0580-8.

[9]

Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 2020;120(14):6820–77. https://doi.org/10.1021/acs.chemrev.9b00268.

[10]

Liu Q, Geng Z, Han C, Fu Y, Li S, He Yb, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sources 2018;389:120–34. https://doi.org/10.1016/j.jpowsour.2018.04.019.

[11]

Gonzalez Puente PM, Song S, Cao S, Rannalter LZ, Pan Z, Xiang X, et al. Garnet-type solid electrolyte: advances of ionic transport performance and its application in all-solid-state batteries. J Adv Ceram 2021;10(5):933–72. https://doi.org/10.1007/s40145-021-0489-7.

[12]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 2007;46(41):7778–81. https://doi.org/10.1002/anie.200701144.

[13]

Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 2014;43(13):4714–27. https://doi.org/10.1039/c4cs00020j.

[14]

Huang X, Song Z, Xiu T, Badding ME, Wen Z. Searching for low-cost LiMO compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte. J. Materiomics 2019;5(2):221–8. https://doi.org/10.1016/j.jmat.2018.09.004.

[15]

Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, et al. In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 2019;63:103895. https://doi.org/10.1016/j.nanoen.2019.103895.

[16]

Wu JF, Pu BW, Wang D, Shi SQ, Zhao N, Guo X, et al. In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl Mater Interfaces 2019;11(1):898–905. https://doi.org/10.1021/acsami.8b18356.

[17]

Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan LZ, et al. Solid garnet batteries. Joule 2019;3(5):1190–9. https://doi.org/10.1016/j.joule.2019.03.019.

[18]

Han G, Kinzer B, Garcia-Mendez R, Choe H, Wolfenstine J, Sakamoto J. Correlating the effect of dopant type (Al, Ga, Ta) on the mechanical and electrical properties of hot-pressed Li-garnet electrolyte. J Eur Ceram Soc 2020;40(5):1999–2006. https://doi.org/10.1016/j.jeurceramsoc.2019.12.054.

[19]

Rangasamy E, Wolfenstine J, Allen J, Sakamoto J. The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7-x-La3-xAxZr2O12 garnet-based ceramic electrolyte. J Power Sources 2013:230 261–266. https://doi.org/10.1016/j.jpowsour.2012.12.076.

[20]

Tong X, Thangadurai V, Wachsman ED. Highly conductive Li garnets by a multielement doping strategy. Inorg Chem 2015;54(7):3600–7. https://doi.org/10.1021/acs.inorgchem.5b00184.

[21]

Wakudkar P, Deshpande AV. CeO2 modified Li6.6La3Zr1.6Sb0.4O12 composite ceramic electrolyte for lithium battery application. J Phys Chem Solid 2021;155. https://doi.org/10.1016/j.jpcs.2021.110092.

[22]

Hatzell KB, Chen XC, Cobb CL, Dasgupta NP, Dixit MB, Marbella LE, et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett 2020;5(3):922–34. https://doi.org/10.1021/acsenergylett.9b02668.

[23]

Liu H, Cheng XB, Huang JQ, Yuan H, Lu Y, Yan C, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett 2020;5(3):833–43. https://doi.org/10.1021/acsenergylett.9b02660.

[24]

Mo F, Ruan J, Sun S, Lian Z, Yang S, Yue X, et al. Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv Energy Mater 2019;9(40). https://doi.org/10.1002/aenm.201902123.

[25]

Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 2009;182(8):2046–52. https://doi.org/10.1016/j.jssc.2009.05.020.

[26]

Thompson T, Wolfenstine J, Allen JL, Johannes M, Huq A, David IN, et al. Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO). J Mater Chem 2014;2(33):13431–6. https://doi.org/10.1039/c4ta02099e.

[27]

Bernstein N, Johannes MD, Hoang K. Origin of the structural phase transition in Li7La3Zr2O12. Phys Rev Lett 2012;109(20):205702. https://doi.org/10.1103/PhysRevLett.109.205702.

[28]

Luo Y, Li X, Zhang Y, Ge L, Chen H, Guo L. Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. Electrochim Acta 2019;294:217–25. https://doi.org/10.1016/j.electacta.2018.10.078.

[29]

Meesala Y, Liao Y-K, Jena A, Yang N-H, Pang WK, Hu S-F, et al. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. J Mater Chem 2019;7(14):8589–601. https://doi.org/10.1039/c9ta00417c.

[30]

Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 2014;16(34):18294–300. https://doi.org/10.1039/c4cp02921f.

[31]

Su J, Huang X, Song Z, Xiu T, Badding ME, Jin J, et al. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram Int 2019;45(12):14991–6. https://doi.org/10.1016/j.ceramint.2019.04.236.

[32]

Xiang X, Fang Z, Chen F, Wang H, Yang W, Wei C, et al. Crystal structure of cubic Li7-3xGaxLa3Zr2O12 with space group of I-43d. Ceram Int 2022;48(7):9371–7. https://doi.org/10.1016/j.ceramint.2021.12.132.

[33]

Wang C, Lin P-P, Gong Y, Liu Z-G, Lin T-S, He P. Synergistic impacts of Ca2+ and Ta5+ dopants on electrical performance of garnet-type electrolytes. J Alloys Compd 2021:879. https://doi.org/10.1016/j.jallcom.2021.160420.

[34]

Seo J-H, Nakaya H, Takeuchi Y, Fan Z, Hikosaka H, Rajagopalan R, et al. Broad temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes. J Eur Ceram Soc 2020;40(15):6241–8. https://doi.org/10.1016/j.jeurceramsoc.2020.06.050.

[35]

Tian Y, Zhou Y, Wang W, Zhou Y. Effects of Ga–Ba Co-doping on the morphology and conductivity of Li7La3Zr2O12 electrolyte synthesized by sol-gel method. Ceram Int 2022;48(1):963–70. https://doi.org/10.1016/j.ceramint.2021.09.181.

[36]

Huang X, Song Z, Xiu T, Badding ME, Wen Z. Sintering, micro-structure and Li+ conductivity of Li7-xLa3Zr2-xNbxO12/MgO (x = 0.2–0.7) Li-Garnet composite ceramics. Ceram Int 2019;45(1):56–63. https://doi.org/10.1016/j.ceramint.2018.09.133.

[37]

Ladenstein L, Simic S, Kothleitner G, Rettenwander D, Wilkening HMR. Anomalies in bulk ion transport in the solid solutions of Li7La3M2O12 (M = Hf, Sn) and Li5La3Ta2O12. J Phys Chem C Nanomater Interfaces 2020;124(31):16796–805. https://doi.org/10.1021/acs.jpcc.0c03558.

[38]

Zhu J, Li X, Wu C, Gao J, Xu H, Li Y, et al. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew Chem Int Ed 2021;60(7):3781–90. https://doi.org/10.1002/anie.202014265.

[39]

Xiang X, Chen F, Yang W, Yang J, Ma X, Chen D, et al. Dual regulation of Li+ migration of Li6.4La3Zr1.4M0.6O12 (M = Sb, Ta, Nb) by bottleneck size and bond length of M−O. J Am Ceram Soc 2019;103(4):2483–90. https://doi.org/10.1111/jace.16920.

[40]

Li Y, Han J-T, Wang C-A, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem 2012;22(30). https://doi.org/10.1039/c2jm31413d.

[41]

Miara LJ, Richards WD, Wang YE, Ceder G. First-principles studies on cation dopants and Electrolyte|Cathode interphases for lithium garnets. Chem Mater 2015;27(11):4040–7. https://doi.org/10.1021/acs.chemmater.5b01023.

[42]

Liu P, Wang Y, Zhang G, Huang Y, Zhang R, Liu X, et al. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv Funct Mater 2022;32(33). https://doi.org/10.1002/adfm.202202588.

[43]

Liu P, Gao S, Zhang G, Huang Y, You W, Che R. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv Funct Mater 2021;31(27). https://doi.org/10.1002/adfm.202102812.

[44]

Dong B, Yeandel SR, Goddard P, Slater PR. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte. Chem Mater 2019;32(1):215–23. https://doi.org/10.1021/acs.chemmater.9b03526.

[45]

Liu P, Gao T, He W, Liu P. Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption. Carbon 2023:202 244–253. https://doi.org/10.1016/j.carbon.2022.10.089.

[46]

Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 2017;223:85–91. https://doi.org/10.1016/j.electacta.2016.12.018.

[47]

Dubey R, Sastre J, Cancellieri C, Okur F, Forster A, Pompizii L, et al. Building a better Li-garnet solid electrolyte/metallic Li interface with antimony. Adv Energy Mater 2021;11(39). https://doi.org/10.1002/aenm.202102086.

[48]

He X, Ji X, Zhang B, Rodrigo ND, Hou S, Gaskell K, et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett 2021:131–9. https://doi.org/10.1021/acsenergylett.1c02122.

[49]

Wan Z, Shi K, Huang Y, Yang L, Yun Q, Chen L, et al. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J Power Sources 2021;505. https://doi.org/10.1016/j.jpowsour.2021.230062.

[50]

Liu M, Xie W, Li B, Wang Y, Li G, Zhang S, et al. Garnet Li7La3Zr2O12-based solid-state lithium batteries achieved by in situ thermally polymerized gel polymer electrolyte. ACS Appl Mater Interfaces 2022;14(38):43116–26. https://doi.org/10.1021/acsami.2c09028.

[51]

Ma X, Xu Y, Zhang B, Xue X, Wang C, He S, et al. Garnet Si–Li7La3Zr2O12 electrolyte with a durable, low resistance interface layer for all-solid-state lithium metal batteries. J Power Sources 2020;453. https://doi.org/10.1016/j.jpowsour.2020.227881.

[52]

Chen F, Luo J, Jing MX, Li J, Huang ZH, Yang H, et al. A sandwich structure composite solid electrolyte with enhanced interface stability and electrochemical properties for solid-state lithium batteries. J Electrochem Soc 2021;168(7). https://doi.org/10.1149/1945-7111/ac0f89.

[53]

Tietz F, Wegener T, Gerhards MT, Giarola M, Mariotto G. Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12. Solid State Ionics 2013;230:77–82. https://doi.org/10.1016/j.ssi.2012.10.021.

[54]

Kim Y, Yoo A, Schmidt R, Sharafi A, Lee H, Wolfenstine J, et al. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against metallic lithium. Front Energy Res 2016;4:1–7. https://doi.org/10.3389/fenrg.2016.00020.

Journal of Materiomics
Pages 651-660
Cite this article:
Xu Z, Hu X, Fu B, et al. Co-doping strategy enhanced the ionic conductivity and excellent lithium stability of garnet-type Li7La3Zr2O12 electrolyte in all solid-state lithium batteries. Journal of Materiomics, 2023, 9(4): 651-660. https://doi.org/10.1016/j.jmat.2023.01.007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return