Garnet-type Li7La3Zr2O12 (LLZO) is one of the most promising solid-state electrolytes (SSEs). However, the application of LLZO is limited by structural instability, low ionic conductivity, and poor lithium stability. To obtain a garnet-type solid electrolyte with a stable structure and high ionic conductivity, a series of TaCe co-doping cubic Li6·4La3ZrTa0.6CeO12 (LLZTCO, x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30) electrolytes were successfully synthesized through conventional solid-phase method. The Ta5+ doping can introduce more lithium vacancies and effectively maintain the stability of the cubic phase. The Ce4+ with a larger ionic radius is introduced into the lattice to widen the Li+ migration bottleneck size, which significantly increased the ionic conductivity to 1.05 × 10−3 S/cm. It also shows excellent stability to lithium metal by the optimization of Li+ transport channel. Li||LLZTCO||Li symmetric cells can cycle stably for more than 6 000 h at a current density of 0.1 mA/cm2 without any surface modifications. The commercialization potential of LLZTCO samples in all solid-state lithium batteries (ASSLBs) is confirmed by the prepared LiFePO4||LLZTCO||Li cells with a capacity retention rate of 98% after 100 cycles at 0.5C. This new co-doping method presents a practical solution for the realization of high-performance ASSLBs.
Fu K, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ Sci 2017;10(7):1568–75. https://doi.org/10.1039/c7ee01004d.
Janek J, Zeier WG. A solid future for battery development. Nat Energy 2016;1(9):1–4. https://doi.org/10.1038/nenergy.2016.141.
Samson AJ, Hofstetter K, Bag S, Thangadurai V. A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci 2019;12(10):2957–75. https://doi.org/10.1039/c9ee01548e.
Yu X, Manthiram A. Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ Sci 2018;11(3):527–43. https://doi.org/10.1039/c7ee02555f.
Bruck AM, Cama CA, Gannett CN, Marschilok AC, Takeuchi ES, Takeuchi KJ. Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry. Inorg Chem Front 2016;3(1):26–40. https://doi.org/10.1039/c5qi00247h.
Li S, Li N, Sun C. A flexible three-dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries. Inorg Chem Front 2021;8(2):361–7. https://doi.org/10.1039/d0qi01159b.
Strauss F, Teo JH, Janek J, Brezesinski T. Investigations into the superionic glass phase of Li4PS4I for improving the stability of high-loading all-solid-state batteries. Inorg Chem Front 2020;7(20):3953–60. https://doi.org/10.1039/d0qi00758g.
Ji X, Zhang Y, Cao M, Gu Q, Wang H, Yu J, et al. Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. J Adv Ceram 2022;11(6):835–61. https://doi.org/10.1007/s40145-022-0580-8.
Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 2020;120(14):6820–77. https://doi.org/10.1021/acs.chemrev.9b00268.
Liu Q, Geng Z, Han C, Fu Y, Li S, He Yb, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sources 2018;389:120–34. https://doi.org/10.1016/j.jpowsour.2018.04.019.
Gonzalez Puente PM, Song S, Cao S, Rannalter LZ, Pan Z, Xiang X, et al. Garnet-type solid electrolyte: advances of ionic transport performance and its application in all-solid-state batteries. J Adv Ceram 2021;10(5):933–72. https://doi.org/10.1007/s40145-021-0489-7.
Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 2007;46(41):7778–81. https://doi.org/10.1002/anie.200701144.
Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 2014;43(13):4714–27. https://doi.org/10.1039/c4cs00020j.
Huang X, Song Z, Xiu T, Badding ME, Wen Z. Searching for low-cost LiMO compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte. J. Materiomics 2019;5(2):221–8. https://doi.org/10.1016/j.jmat.2018.09.004.
Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, et al. In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 2019;63:103895. https://doi.org/10.1016/j.nanoen.2019.103895.
Wu JF, Pu BW, Wang D, Shi SQ, Zhao N, Guo X, et al. In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl Mater Interfaces 2019;11(1):898–905. https://doi.org/10.1021/acsami.8b18356.
Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan LZ, et al. Solid garnet batteries. Joule 2019;3(5):1190–9. https://doi.org/10.1016/j.joule.2019.03.019.
Han G, Kinzer B, Garcia-Mendez R, Choe H, Wolfenstine J, Sakamoto J. Correlating the effect of dopant type (Al, Ga, Ta) on the mechanical and electrical properties of hot-pressed Li-garnet electrolyte. J Eur Ceram Soc 2020;40(5):1999–2006. https://doi.org/10.1016/j.jeurceramsoc.2019.12.054.
Rangasamy E, Wolfenstine J, Allen J, Sakamoto J. The effect of 24c-site (A) cation substitution on the tetragonal–cubic phase transition in Li7-x-La3-xAxZr2O12 garnet-based ceramic electrolyte. J Power Sources 2013:230 261–266. https://doi.org/10.1016/j.jpowsour.2012.12.076.
Tong X, Thangadurai V, Wachsman ED. Highly conductive Li garnets by a multielement doping strategy. Inorg Chem 2015;54(7):3600–7. https://doi.org/10.1021/acs.inorgchem.5b00184.
Wakudkar P, Deshpande AV. CeO2 modified Li6.6La3Zr1.6Sb0.4O12 composite ceramic electrolyte for lithium battery application. J Phys Chem Solid 2021;155. https://doi.org/10.1016/j.jpcs.2021.110092.
Hatzell KB, Chen XC, Cobb CL, Dasgupta NP, Dixit MB, Marbella LE, et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett 2020;5(3):922–34. https://doi.org/10.1021/acsenergylett.9b02668.
Liu H, Cheng XB, Huang JQ, Yuan H, Lu Y, Yan C, et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett 2020;5(3):833–43. https://doi.org/10.1021/acsenergylett.9b02660.
Mo F, Ruan J, Sun S, Lian Z, Yang S, Yue X, et al. Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv Energy Mater 2019;9(40). https://doi.org/10.1002/aenm.201902123.
Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 2009;182(8):2046–52. https://doi.org/10.1016/j.jssc.2009.05.020.
Thompson T, Wolfenstine J, Allen JL, Johannes M, Huq A, David IN, et al. Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO). J Mater Chem 2014;2(33):13431–6. https://doi.org/10.1039/c4ta02099e.
Bernstein N, Johannes MD, Hoang K. Origin of the structural phase transition in Li7La3Zr2O12. Phys Rev Lett 2012;109(20):205702. https://doi.org/10.1103/PhysRevLett.109.205702.
Luo Y, Li X, Zhang Y, Ge L, Chen H, Guo L. Electrochemical properties and structural stability of Ga- and Y- co-doping in Li7La3Zr2O12 ceramic electrolytes for lithium-ion batteries. Electrochim Acta 2019;294:217–25. https://doi.org/10.1016/j.electacta.2018.10.078.
Meesala Y, Liao Y-K, Jena A, Yang N-H, Pang WK, Hu S-F, et al. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. J Mater Chem 2019;7(14):8589–601. https://doi.org/10.1039/c9ta00417c.
Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Franz Lux S, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 2014;16(34):18294–300. https://doi.org/10.1039/c4cp02921f.
Su J, Huang X, Song Z, Xiu T, Badding ME, Jin J, et al. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram Int 2019;45(12):14991–6. https://doi.org/10.1016/j.ceramint.2019.04.236.
Xiang X, Fang Z, Chen F, Wang H, Yang W, Wei C, et al. Crystal structure of cubic Li7-3xGaxLa3Zr2O12 with space group of I-43d. Ceram Int 2022;48(7):9371–7. https://doi.org/10.1016/j.ceramint.2021.12.132.
Wang C, Lin P-P, Gong Y, Liu Z-G, Lin T-S, He P. Synergistic impacts of Ca2+ and Ta5+ dopants on electrical performance of garnet-type electrolytes. J Alloys Compd 2021:879. https://doi.org/10.1016/j.jallcom.2021.160420.
Seo J-H, Nakaya H, Takeuchi Y, Fan Z, Hikosaka H, Rajagopalan R, et al. Broad temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes. J Eur Ceram Soc 2020;40(15):6241–8. https://doi.org/10.1016/j.jeurceramsoc.2020.06.050.
Tian Y, Zhou Y, Wang W, Zhou Y. Effects of Ga–Ba Co-doping on the morphology and conductivity of Li7La3Zr2O12 electrolyte synthesized by sol-gel method. Ceram Int 2022;48(1):963–70. https://doi.org/10.1016/j.ceramint.2021.09.181.
Huang X, Song Z, Xiu T, Badding ME, Wen Z. Sintering, micro-structure and Li+ conductivity of Li7-xLa3Zr2-xNbxO12/MgO (x = 0.2–0.7) Li-Garnet composite ceramics. Ceram Int 2019;45(1):56–63. https://doi.org/10.1016/j.ceramint.2018.09.133.
Ladenstein L, Simic S, Kothleitner G, Rettenwander D, Wilkening HMR. Anomalies in bulk ion transport in the solid solutions of Li7La3M2O12 (M = Hf, Sn) and Li5La3Ta2O12. J Phys Chem C Nanomater Interfaces 2020;124(31):16796–805. https://doi.org/10.1021/acs.jpcc.0c03558.
Zhu J, Li X, Wu C, Gao J, Xu H, Li Y, et al. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew Chem Int Ed 2021;60(7):3781–90. https://doi.org/10.1002/anie.202014265.
Xiang X, Chen F, Yang W, Yang J, Ma X, Chen D, et al. Dual regulation of Li+ migration of Li6.4La3Zr1.4M0.6O12 (M = Sb, Ta, Nb) by bottleneck size and bond length of M−O. J Am Ceram Soc 2019;103(4):2483–90. https://doi.org/10.1111/jace.16920.
Li Y, Han J-T, Wang C-A, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem 2012;22(30). https://doi.org/10.1039/c2jm31413d.
Miara LJ, Richards WD, Wang YE, Ceder G. First-principles studies on cation dopants and Electrolyte|Cathode interphases for lithium garnets. Chem Mater 2015;27(11):4040–7. https://doi.org/10.1021/acs.chemmater.5b01023.
Liu P, Wang Y, Zhang G, Huang Y, Zhang R, Liu X, et al. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv Funct Mater 2022;32(33). https://doi.org/10.1002/adfm.202202588.
Liu P, Gao S, Zhang G, Huang Y, You W, Che R. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv Funct Mater 2021;31(27). https://doi.org/10.1002/adfm.202102812.
Dong B, Yeandel SR, Goddard P, Slater PR. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte. Chem Mater 2019;32(1):215–23. https://doi.org/10.1021/acs.chemmater.9b03526.
Liu P, Gao T, He W, Liu P. Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption. Carbon 2023:202 244–253. https://doi.org/10.1016/j.carbon.2022.10.089.
Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 2017;223:85–91. https://doi.org/10.1016/j.electacta.2016.12.018.
Dubey R, Sastre J, Cancellieri C, Okur F, Forster A, Pompizii L, et al. Building a better Li-garnet solid electrolyte/metallic Li interface with antimony. Adv Energy Mater 2021;11(39). https://doi.org/10.1002/aenm.202102086.
He X, Ji X, Zhang B, Rodrigo ND, Hou S, Gaskell K, et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett 2021:131–9. https://doi.org/10.1021/acsenergylett.1c02122.
Wan Z, Shi K, Huang Y, Yang L, Yun Q, Chen L, et al. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J Power Sources 2021;505. https://doi.org/10.1016/j.jpowsour.2021.230062.
Liu M, Xie W, Li B, Wang Y, Li G, Zhang S, et al. Garnet Li7La3Zr2O12-based solid-state lithium batteries achieved by in situ thermally polymerized gel polymer electrolyte. ACS Appl Mater Interfaces 2022;14(38):43116–26. https://doi.org/10.1021/acsami.2c09028.
Ma X, Xu Y, Zhang B, Xue X, Wang C, He S, et al. Garnet Si–Li7La3Zr2O12 electrolyte with a durable, low resistance interface layer for all-solid-state lithium metal batteries. J Power Sources 2020;453. https://doi.org/10.1016/j.jpowsour.2020.227881.
Chen F, Luo J, Jing MX, Li J, Huang ZH, Yang H, et al. A sandwich structure composite solid electrolyte with enhanced interface stability and electrochemical properties for solid-state lithium batteries. J Electrochem Soc 2021;168(7). https://doi.org/10.1149/1945-7111/ac0f89.
Tietz F, Wegener T, Gerhards MT, Giarola M, Mariotto G. Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12. Solid State Ionics 2013;230:77–82. https://doi.org/10.1016/j.ssi.2012.10.021.
Kim Y, Yoo A, Schmidt R, Sharafi A, Lee H, Wolfenstine J, et al. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against metallic lithium. Front Energy Res 2016;4:1–7. https://doi.org/10.3389/fenrg.2016.00020.