AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Remarkable plasticity and softness of polymorphic InSe van der Waals crystals

Yupeng MaaHaoran HuangaYifei LiuaHeyang ChenaXudong BaibKunpeng Zhaoa,bMin JincTian-Ran Weia,b( )Xun Shia,d( )
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Wuzhen Laboratory, Tongxiang, 314500, China
College of Materials, Shanghai Dianji University, Shanghai 201306, China
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Show Author Information

Graphical Abstract

Abstract

Indium selenide (InSe) crystals are reported to show exceptional plasticity, a new property to two-dimensional van der Waals (2D vdW) semiconductors. However, the correlation between plasticity and specific prototypes is unclear, and the understanding of detailed plastic deformation mechanisms is inadequate. Here three prototypes of InSe are predicted to be plastically deformable by calculation, and the plasticity of polymorphic crystals is verified by experiment. Moreover, distinct nanoindentation behaviors are seen on the cleavage and cross-section surfaces. The modulus and hardness of InSe are the lowest ones among a large variety of materials. The plastic deformation is further perceived from chemical interactions during the slip process. Particularly for the cross-layer slip, the initial In-Se bonds break while new In-In and Se-Se bonds are newly formed, maintaining a decent interaction strength. The remarkable plasticity and softness alongside the novel physical properties, endow InSe great promise for application in deformable and flexible electronics.

References

[1]

Seeger K. Semiconductor physics: an introduction. ninth ed. Springer; 2004.

[2]

Green D. An introduction to the mechanical properties of ceramics. Cambridge: Cambridge University Press; 1998.

[3]
Faber K, Malloy K. Semiconductors and Semimetals. The mechanical properties of semiconductors, vol. 37. Academic Press; 1992.
[4]

Chen H, Wei T, Zhao K, Qiu P, Chen L, He J, et al. Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat 2020;3:22–35.

[5]

Peng J, Snyder G. A figure of merit for flexibility. Science 2019;366:690–1.

[6]

Yang Q, Yang S, Qiu P, Peng L, Wei T, Zhang Z, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022;377:854–8.

[7]

Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ Sci 2019;12:2983–90.

[8]

Yang S, Gao Z, Qiu P, Liang J, Wei T, Deng T, et al. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Adv Mater 2021;33:2007681.

[9]

Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421–6.

[10]

Wei T, Qiu P, Zhao K, Shi X, Chen L. Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv Mater 2023;35:2110236.

[11]

Gao Z, Yang Q, Qiu P, Wei T, Yang S, Xiao J, et al. P-type plastic inorganic thermoelectric materials. Adv Energy Mater 2021;11:2100883.

[12]

Peng L, Yang S, Wei T, Qiu P, Yang J, Zhang Z, et al. Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. J. Materiomics 2022;8:656–61.

[13]

He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Sci Adv 2020;6:eaaz8423.

[14]

Hu H, Wang Y, Fu C, Zhao X, Zhu T. Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility. Innovation 2022;3:100341.

[15]

Wei T, Jin M, Wang Y, Chen H, Gao Z, Zhao K, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 2020;369:542–5.

[16]

Han X. Ductile van der Waals materials. Science 2020;369:509.

[17]

Gao Z, Wei T, Deng T, Qiu P, Xu W, Wang Y, et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat Commun 2022;13:7491.

[18]

Wang H, Wu H, Lin W, Zhang B, Li X, Zhang Y, et al. Orientation-dependent large plasticity of single-crystalline gallium selenide. Cell Rep Phys Sci 2022;3:100816.

[19]

Wang X, Tan J, Ouyang J, Zhang H, Wang J, Wang Y, et al. Designing inorganic semiconductors with cold-rolling processability. Adv Sci 2022;9:2203776.

[20]

Deng T, Gao Z, Qiu P, Wei T, Xiao J, Wang G, et al. Plastic/Ductile bulk 2D van der Waals single-crystalline SnSe2 for flexible thermoelectrics. Adv Sci 2022;9:2203436.

[21]

Sun B, Chen D, Cheng Y, Fei W, Jiang D, Tang S, et al. Sugar-derived isotropic nanoscale polycrystalline graphite capable of considerable plastic deformation. Adv Mater 2022;34:2200363.

[22]

Cantos-Prieto F, Falin A, Alliati M, Qian D, Zhang R, Tao T, et al. Layer-dependent mechanical properties and enhanced plasticity in the van der Waals Chromium Trihalide magnets. Nano Lett 2021;21:3379–85.

[23]

Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, et al. Phase identification and strong second harmonic generation in pure ε-InSe and its alloys. Nano Lett 2019;19:2634–40.

[24]

Zhang B, Wu H, Peng K, Shen X, Gong X, Zheng S, et al. Super deformability and thermoelectricity of bulk γ-InSe single crystals. Chin Phys B 2021;30:078101.

[25]

Zhao C, Yan W, Han S, Zhang W, Jin M, Liu D. Mechanically accessible band engineering via indentation-induced phase transition on two-dimensional layered β-InSe. Appl Surf Sci 2022;604:154573.

[26]

Sun M, Wang W, Zhao Q, Gan X, Sun Y, Jie W, et al. ε-InSe single crystals grown by a horizontal gradient freeze method. CrystEngComm 2020;22:7864–9.

[27]

De Blasi C, Micocci G, Mongelli S, Tepore A. Large InSe single crystals grown from stoichiometric and non-stoichiometric melts. J Cryst Growth 1982;57:482–6.

[28]

Blochl P, Jepsen O, Andersen O. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 1994;49:16223–33.

[29]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558–61.

[30]

Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8.

[31]

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011;32:1456–65.

[32]

Vítek V. Intrinsic stacking faults in body-centred cubic crystals. Philos Mag A 1968;18:773–86.

[33]

Nogaret T, Curtin W, Yasi J, Hector L, Trinkle D. Atomistic study of edge and screw <c+a> dislocations in magnesium. Acta Mater 2010;58:4332–43.

[34]

Maintz S, Deringer V, Tchougreeff A, Dronskowski R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem 2016;37:1030–5.

[35]

Dai M, Gao C, Nie Q, Wang Q, Lin Y, Chu J, et al. Properties, synthesis, and device applications of 2D layered InSe. Adv Mater Technol 2022;7:2200321.

[36]

Schuh C, Nieh T. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater 2003;51:87–99.

[37]

Mosca D, Mattoso N, Lepienski C, Veiga W, Mazzaro I, Etgens V, et al. Mechanical properties of layered InSe and GaSe single crystals. J Appl Phys 2002;91:140–4.

[38]

Huang C, Yang B, Peng X, Chen S. Plastic deformation and hardening mechanisms of a nano-twinned cubic Boron Nitride ceramic. ACS Appl Mater Interfaces 2020;12:50161–75.

[39]

Kucheyev S, Bradby J, Williams J, Jagadish C, Toth M, Phillips M, et al. Nanoindentation of epitaxial GaN films. Appl Phys Lett 2000;77:3373–5.

[40]

Saha R, Nix W. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 2002;50:23–38.

[41]

Guo J, Wang K, Fujita T, McCauley J, Singh J, Chen M. Nanoindentation characterization of deformation and failure of aluminum oxynitride. Acta Mater 2011;59:1671–9.

[42]

Coleman V, Bradby J, Jagadish C, Munroe P, Heo Y, Pearton S, et al. Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Appl Phys Lett 2005;86:203105.

[43]

Lei J, Wuliji H, Zhao K, Wei T, Xu Q, Li P, et al. Efficient lanthanide Gd doping promoting the thermoelectric performance of Mg3Sb2-based materials. J Mater Chem 2021;9:25944–53.

[44]

Veiga W, Lepienski C. Nanomechanical properties of lead iodide (PbI2) layered crystals. Mater Sci Eng, A 2002;335:6–13.

[45]

Zhang Z, Zhao K, Chen H, Ren Q, Yue Z, Wei T, et al. Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-yAgyTe1-2xSxSex. Acta Mater 2022;224:117512.

[46]

Volinsky A, Moody N, Gerberich W. Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J Mater Res 2011;19:2650–7.

[47]

Díez-Pascual A, Gómez-Fatou M, Ania F, Flores A. Nanoindentation in polymer nanocomposites. Prog Mater Sci 2015;67:1–94.

[48]

Das B, Eswar Prasad K, Ramamurty U, Rao C. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 2009;20:125705.

[49]

García-Tuñon E, Franco J, Eslava S, Bhakhri V, Saiz E, Giuliani F, et al. Synthesis and optimization of the production of millimeter-sized hydroxyapatite single crystals by Cl--OH- ion exchange. J Am Ceram Soc 2013;96:759–65.

[50]

Oliver W, Pharr G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 2011;7:1564–83.

[51]

Chung H, Weinberger M, Yang J, Tolbert S, Kaner R. Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2. Appl Phys Lett 2008;92:261904.

[52]

Myers S, Knapp J, Follstaedt D, Dugger M. Mechanical properties of nickel ion-implanted with titanium and carbon and their relation to microstructure. J Appl Phys 1998;83:1256–64.

[53]

Kuang D, Xu L, Liu L, Hu W, Wu Y. Graphene-nickel composites. Appl Surf Sci 2013;273:484–90.

[54]

Friedmann T, Sullivan J, Knapp J, Tallant D, Follstaedt D, Medlin D, et al. Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond. Appl Phys Lett 1997;71:3820–2.

[55]

Dai S, Xiang Y, Srolovitz D. Structure and energetics of interlayer dislocations in bilayer graphene. Phys Rev B 2016;93:085410.

[56]

Zhou S, Han J, Dai S, Sun J, Srolovitz D. Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers. Phys Rev B 2015;92:155438.

[57]

Rudenko A, Katsnelson M, Gornostyrev Y. Dislocation structure and mobility in the layered semiconductor InSe: a first-principles study. 2D Mater 2021;8:045028.

Journal of Materiomics
Pages 709-716
Cite this article:
Ma Y, Huang H, Liu Y, et al. Remarkable plasticity and softness of polymorphic InSe van der Waals crystals. Journal of Materiomics, 2023, 9(4): 709-716. https://doi.org/10.1016/j.jmat.2023.01.011

224

Views

15

Crossref

17

Web of Science

17

Scopus

Altmetrics

Received: 09 December 2022
Revised: 12 January 2023
Accepted: 18 January 2023
Published: 22 February 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return