AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Anisotropic emission of orientation-controlled mixed-dimensional perovskites for light-emitting devices

Yuhui QiaYang Liub,c( )Chen LinbYunzhou DengdPeng BaieYunan GaoeHaiming ZhuaZhizhen Yeb,c( )Yizheng Jina( )
Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
State Key Laboratory of Silicon Materials, School of Materials and Engineering, Zhejiang University, Hangzhou, 310027, China
Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Perovskite light-emitting diodes (PeLEDs) are attracting increasing attention owing to their impressive efficiencies and high luminance across the full visible light range. Further improvement of the external quantum efficiency (EQE) of planar PeLEDs is limited by the light out-coupling efficiency. Introducing perovskite emitters with directional emission in PeLEDs is an effective way to improve light extraction. Here, we report that it is possible to achieve directional emission in mixed-dimensional perovskites by controlling the orientation of the emissive center in the film. Multiple characterization methods suggest that our mixed-dimensional perovskite film shows highly orientated transition dipole moments (TDMs) with the horizontal ratio of over 88%, substantially higher than that of the isotropic emitters. The horizontally dominated TDMs lead to PeLEDs with exceptional high light out-coupling efficiency of over 32%, enabling a high EQE of 18.2%.

References

[1]

Tan ZK, Moghaddam R, Lai M, Docampo P, Higler R, Deschler F, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 2014;9:687-92. https://doi.org/10.1038/nnano.2014.149.

[2]

Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 2015;10:391-402. https://doi.org/10.1038/nnano.2015.90.

[3]

Cho H, Jeong SH, Park MH, Kim YH, Wolf C, Lee CL, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015;350:1222-5. https://doi.org/10.1126/science.aad1818.

[4]

Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics 2016;10:699-704. https://doi.org/10.1038/nphoton.2016.185.

[5]

Yuan M, Quan L, Comin R, Walters G, Sabatini R, Voznyy O, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol 2016;11:872-7. https://doi.org/10.1038/nnano.2016.110.

[6]

Xiao Z, Kerner RA, Zhao L, Tran NL, Lee KM, Koh TW, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics 2017;11:108-15. https://doi.org/10.1038/nphoton.2016.269.

[7]

Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018;562:249-53. https://doi.org/10.1038/s41586-018-0576-2.

[8]

Lin K, Xing J, Quan L, Arquer FPG, Gong X, Lu J, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018;562:245-8. https://doi.org/10.1038/s41586-018-0575-3.

[9]

Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat Photonics 2018;12:783-9. https://doi.org/10.1038/s41566-018-0283-4.

[10]

Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics 2019;13:418-24. https://doi.org/10.1038/s41566-019-0390-x.

[11]

Liu X, Xu W, Bai S, Jin Y, Wang J, Friend RH, et al. Metal halide perovskites for light-emitting diodes. Nat Mater 2021;20:10-21. https://doi.org/10.1038/s41563-020-0784-7.

[12]

Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv Mater 2021;33:e2103268. https://doi.org/10.1002/adma.202103268.

[13]

Ma D, Lin K, Dong Y, Choubisa H, Proppe AH, Wu D, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 2021;599:594-8. https://doi.org/10.1038/s41586-021-03997-z.

[14]

Dong W, Zhang X, Yang F, Zeng Q, Jin W, Zhang W, et al. Amine-terminated carbon dots linking hole transport layer and vertically oriented quasi-2D perovskites through hydrogen bonds enable efficient LEDs. ACS Nano 2022;16:9679-90. https://doi.org/10.1021/acsnano.2c03064.

[15]

Wang Y, Yuan F, Dong Y, Li J, Johnston A, Chen B, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized alpha-CsPbI3 perovskite. Angew Chem Int Ed Engl 2021;60:16164-70. https://doi.org/10.1002/anie.202104812.

[16]

Jiang J, Chu Z, Yin Z, Li J, Yang Y, Chen J, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv Mater 2022;34:e2204460. https://doi.org/10.1002/adma.202204460.

[17]

Zhu H, Tong G, Li J, Xu E, Tao X, Sheng Y, et al. Enriched-bromine surface state for stable sky-blue spectrum perovskite QLEDs with an EQE of 14.6%. Adv Mater 2022;34:2205092. https://doi.org/10.1002/adma.202205092.

[18]

Shen Y, Li Y, Zhang K, Zhang L, Xie F, Chen L, et al. Multifunctional crystal regulation enables efficient and stable sky-blue perovskite light-emitting diodes. Adv Funct Mater 2022;32:2206574. https://doi.org/10.1002/adfm.202206574.

[19]

Kumar S, Marcato T, Krumeich F, Li Y, Chiu Y, Shih CJ. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat Commun 2022;13:2106. https://doi.org/10.1038/s41467-022-29812-5.

[20]

Kim J-S, Ho PKH, Greenham NC, Friend RH. Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J Appl Phys 2000;88:1073-81. https://doi.org/10.1063/1.373779.

[21]

Barnes WL. Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 2009;45:661-99. https://doi.org/10.1080/09500349808230614.

[22]

Fu Y, Liu H, Yang D, Ma D, Zhao Z, Tang B. Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation. Sci Adv 2021;7:eabj2504. https://doi.org/10.1126/sciadv.abj2504.

[23]

Wu TL, Huang MJ, Lin CC, Huang PY, Chou TY, Chen-Cheng RW. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nat Photonics 2018;12:235-40. https://doi.org/10.1038/s41566-018-0112-9.

[24]

Cui J, Liu Y, Deng Y, Lin C, Fang Z, Xiang C, et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci Adv 2021;7:eabg8458. https://doi.org/10.1126/sciadv.abg8458.

[25]

Sun C, Jiang Y, Cui M, Qiao L, Wei J, Huang Y, et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat Commun 2021;12:2207. https://doi.org/10.1038/s41467-021-22529-x.

[26]

Li P, Wang J, Chen H, Zhang H, Li C, Xu W, et al. Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin Chem Lett 2022;33:1017-20. https://doi.org/10.1016/j.cclet.2021.06.084.

[27]

Manders JR, Tsang SW, Hartel MJ, Lai TH, Chen S, Amb CM, et al. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv Funct Mater 2013;23:2993-3001. https://doi.org/10.1002/adfm.201202269.

[28]

Si J, Liu Y, He Z, Du H, Du K, Chen D, et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 2017;11:11100-7. https://doi.org/10.1021/acsnano.7b05191.

[29]

de Mello JC, Wittmann HF, Friend RH. An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 1997;9:230-2. https://doi.org/10.1002/adma.19970090308.

[30]

Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014;515:96-9. https://doi.org/10.1038/nature13829.

[31]

Neyts KA. Simulation of light emission from thin-film microcavities. J Opt Soc Am A 1998;15:962-71. https://doi.org/10.1364/JOSAA.15.000962.

[32]

Tsai H, Shrestha S, Pan L, Huang HH, Strzalka J, Williams D, et al. Quasi-2D Perovskite crystalline layers for printable direct conversion X-ray imaging. Adv Mater 2022;34:e2106498. https://doi.org/10.1002/adma.202106498.

[33]

He X, Xia M, Wu H, Du X, Song Z, Zhao S, et al. Quasi-2D perovskite thick film for X-ray detection with low detection limit. Adv Funct Mater 2021;32:2109458. https://doi.org/10.1002/adfm.202109458.

[34]

Wang K, Wu C, Yang D, Jiang Y, Priya S. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano 2018;12:4919-29. https://doi.org/10.1021/acsnano.8b01999.

[35]

Lieb MA, Zavislan JM, Novotny L. Single-molecule orientations determined by direct emission pattern imaging. J Opt Soc Am B 2004;21:1210-5. https://doi.org/10.1364/JOSAB.21.001210.

[36]

Schuller JA, Karaveli S, Schiros T, He K, Yang S, Kymissis I, et al. Orientation of luminescent excitons in layered nanomaterials. Nat Nanotechnol 2013;8:271-6. https://doi.org/10.1038/nnano.2013.20.

[37]

Jurow MJ, Morgenstern T, Eisler C, Kang J, Penzo E, Do M, et al. Manipulating the transition dipole moment of CsPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett 2019;19:2489-96. https://doi.org/10.1021/acs.nanolett.9b00122.

[38]

Frischeisen J, Yokoyama D, Adachi C, Brütting W. Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 2010;96:073302. https://doi.org/10.1063/1.3309705.

[39]

Shin H, Lee JH, Moon CK, Huh JS, Sim B, Kim JJ. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer. Adv Mater 2016;28:4920-5. https://doi.org/10.1002/adma.201506065.

[40]

Sheng X, Chen G, Wang C, Wang W, Hui J, Zhang Q, et al. Polarized optoelectronics of CsPbX3 (X = Cl, Br, I) perovskite nanoplates with tunable size and thickness. Adv Funct Mater 2018;28:1800283. https://doi.org/10.1002/adfm.201800283.

[41]

Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics 2019;13:760-4. https://doi.org/10.1038/s41566-019-0505-4.

Journal of Materiomics
Pages 762-767
Cite this article:
Qi Y, Liu Y, Lin C, et al. Anisotropic emission of orientation-controlled mixed-dimensional perovskites for light-emitting devices. Journal of Materiomics, 2023, 9(4): 762-767. https://doi.org/10.1016/j.jmat.2023.01.014

160

Views

3

Crossref

1

Web of Science

2

Scopus

Altmetrics

Received: 14 October 2022
Revised: 29 January 2023
Accepted: 31 January 2023
Published: 02 March 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return