AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Doping strategy on improving the overall cathodic performance of double perovskite LnBaCo2O5+δ (Ln=Pr, Gd) as potential SOFC cathode materials

Fangze Chena,b,1Dacheng Zhoua,b,1Xueqing XiongbJuntao PanbDonglin CaibZe WeibXiyong Chena,b,( )Yihui Liuc,( )Nengneng Luoa,bJialin Yana,bToyohisa Fujitaa,b
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, Guangxi, China
School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, 430070, Hubei, China

1 Mr. Fangze Chen and Dacheng Zhou contributed to this study equally.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

A series of single-phase double perovskite Pr1-xGdxBaCo2-yFeyO5+δ (x = 0, 0.5 and 1, 0 ≤ y ≤ 1) materials were engineered through A/B site co-doping strategy to improve the mechanical, electrical and electrochemical properties as potential cathode materials for the application of intermediate solid oxide fuel cells (IT-SOFCs). The corresponding thermochemical stability, thermal expansion behavior, electrical conductivity and cathodic polarization resistance of the materials were systematically investigated. It was found that the A-site dual lanthanide doped Pr0.5Gd0.5BaCo2O5+δ (PGBCO) exhibits improved electrical conductivity, reduced thermal expansion, and comparatively low electrochemical polarization resistance versus single lanthanide double perovskite, PrBaCo2O5+δ (PBCO) and GdBaCo2O5+δ (GBCO) materials. Further investigation on the effect of B-site Fe-doping on Pr0.5Gd0.5BaCo2-yFeyO5+δ (PGBCF-y, 0 ≤ y ≤ 1) reveals that all the PGBCF-y compositions exhibit excellent chemical stability with Gd-doped ceria (GDC) at operating temperatures not higher than 1 100 ℃. Besides, doping of Fe in B-site can effectively reduce the thermal expansion coefficients (TECs) of the Pr0.5Gd0.5BaCo2O5+δ ceramics at 30–1 000 ℃. And the electrochemical impedance spectra (EIS) results show that the PGBCF-y|GDC| PGBCF-y symmetric cells have acceptable low area specific polarization resistances. Further examination of the cathodic polarization and characteristic capacitance from the AC impedance spectra by employing the relaxation time distribution (DRT) method demonstrated that charge transfer is the dominating sub-process for the oxygen transport through the materials.

References

[1]

Bao C, Wang Y, Feng D, Jiang Z, Zhang X. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Prog. Energ. Combust. 2018;66:83–140. https://doi.org/10.1016/j.pecs.2017.12.002.

[2]

Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: a brief review. J Power Sources 2015;298:46–67. https://doi.org/10.1016/j.jpowsour.2015.08.034.

[3]

Zakaria Z, Awang Mat Z, Abu Hassan SH, Boon Kar Y. A review of solid oxide fuel cell component fabrication methods toward lowering temperature. Int J Energy Res 2020;44:594–611. https://doi.org/10.1002/er.4907.

[4]

Ndubuisi A, Abouali S, Singh K, Thangadurai V. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes. J Mater Chem 2022;10:2196–2227. https://doi.org/10.1039/d1ta08475e.

[5]

Lei Zhang XL, Zhang Leilei, cai Hongdong, Xu Jingsheng, Wang Li, Wen Long. Improved thermal expansion and electrochemical performance of La0.4Sr0.6-Co0.9Sb0.1O3-δ-Ce0.8Sm0.2O1.9 composite cathode for IT-SOFCs. Solid State Sci.; 2019. p. 126–32. https://doi.org/10.1016/j.solidstatesciences.2019.03.023.

[6]

Acuña LM, Muñoz FF, Fuentes RO. Correlation between structural, chemical, and electrochemical properties of La0.6Sr0.4CoO3-δ nanopowders for application in intermediate temperature solid oxide fuel cells. J Phys Chem C 2016;120:20387–99. https://doi.org/10.1021/acs.jpcc.6b06622.

[7]

Li J, Gao Z, Min H, Li M, Lu Y, Wang X, Ding X. Enabled fast cathode kinetics for intermediate-temperature solid oxide fuel cell with improved CO2 poisoning robustness: La2NiO4 surfaced-modified SrCo0.8Nb0.1Ta0.1O3-δ composite. J Power Sources 2021;506. https://doi.org/10.1016/j.jpowsour.2021.230057.

[8]

Zheng Z, Jing J, Lei Z, Wang Z, Yang Z, Jin C, Peng S. Performance and DRT analysis of infiltrated functional cathode based on the anode supported SOFCs with long-term stability. Int J Hydrogen Energy 2022;47:18139–47. https://doi.org/10.1016/j.ijhydene.2022.03.289.

[9]

Yang Q, Tian D, Liu R, Wu H, Chen Y, Ding Y, Lu X, Lin B. Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln=La and Nd) for SOFCs. Int J Hydrogen Energy 2021;46:5630–41. https://doi.org/10.1016/j.ijhydene.2020.11.031.

[10]

Pang S, Jiang X, Li X, Su Z, Xu H, Xu Q, Chen C. Characterization of cation-ordered perovskite oxide LaBaCo2O5+δ as cathode of intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 2012;37:6836–43. https://doi.org/10.1016/j.ijhydene.2012.01.056.

[11]

Zhao L, He B, Lin B, Ding H, Wang S, Ling Y, Peng R, Meng G, Liu X. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode. J Power Sources 2009;194:835–7. https://doi.org/10.1016/j.jpowsour.2009.06.010.

[12]

Yoo S, Shin JY, Kim G. Thermodynamic and electrical characteristics of NdBaCo2O5+δ at various oxidation and reduction states. J Mater Chem 2011;21:439–43. https://doi.org/10.1039/c0jm01779e.

[13]

Kim JH, Irvine JTS. Characterization of layered perovskite oxides NdBa1-xSrxCo2O5+δ (x=0 and 0.5) as cathode materials for IT-SOFC. Int J Hydrogen Energy 2012;37:5920–9. https://doi.org/10.1016/j.ijhydene.2011.12.150.

[14]

Liu J, Jin F, Yang X, Niu B, Li Y, He T. YBaCo2O5+δ-based double-perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties. Electrochim Acta 2019;297:344–54. https://doi.org/10.1016/j.electacta.2018.11.214.

[15]

Zhao H, Zheng Y, Yang C, Shen Y, Du Z, Świerczek K. Electrochemical performance of Pr1-xYxBaCo2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 2013;38:16365–72. https://doi.org/10.1016/j.ijhydene.2013.10.003.

[16]

Jin F, Li L, He T. NdBaCo2/3Fe2/3Cu2/3O5+δ double perovskite as a novel cathode material for CeO2- and LaGaO3- based solid oxide fuel cells. J Power Sources 2015;273:591–9. https://doi.org/10.1016/j.jpowsour.2014.09.147.

[17]

Xu J, Cai H, Hao G, Zhang L, Song Z, Long W, Zhang L, Wang L. Characterization of high–valence Mo–doped PrBaCo2O5+δ cathodes for IT–SOFCs. J Alloys Compd 2020:842. https://doi.org/10.1016/j.jallcom.2020.155600.

[18]

Huang X, Feng J, Abdellatif HRS, Zou J, Zhang G, Ni C. Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+δ (x=0, 0.5, 1) as promising cathodes for IT-SOFCs. Int J Hydrogen Energy 2018;43:8962–71. https://doi.org/10.1016/j.ijhydene.2018.03.163.

[19]

Pang S, Wang W, Chen T, Wang Y, Xu K, Shen X, Xi X, Fan J. The effect of potassium on the properties of PrBa1-xCo2O5+δ (x=0.00–0.10) cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 2016;41:13705–14. https://doi.org/10.1016/j.ijhydene.2016.05.060.

[20]

Tarancón A, Burriel M, Santiso J, Skinner SJ, Kilner JA. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 2010;20. https://doi.org/10.1039/b922430k.

[21]

Jiang X, Wang J, Jia G, Qie Z, Shi Y, Idrees A, Zhang Q, Jiang L. Characterization of PrBa0.92CoCuO6-δ as a potential cathode material of intermediate-temperature solid oxide fuel cell. Int J Hydrogen Energy 2017;42:6281–9. https://doi.org/10.1016/j.ijhydene.2016.12.076.

[22]

Kim G, Wang S, Jacobson AJ, Reimus L, Brodersen P, Mims CA. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J Mater Chem 2007;17. https://doi.org/10.1039/b618345j.

[23]

Pang S, Jiang X, Li X, Wang Q, Su Z. Characterization of Ba-deficient PrBa1−xCo2O5+δ as cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 2012;204:53–9. https://doi.org/10.1016/j.jpowsour.2012.01.034.

[24]

Lee SJ, Kim DS, Kim DK. High-performance GdBaCo2O5+δ-Ce0.9Gd0.1O1.95 composite cathode for solid oxide fuel cells. Curr Appl Phys 2011;11:S238-S241. https://doi.org/10.1016/j.cap.2010.11.010.

[25]

Qi H, Zhang T, Liu D, Cheng M, Tu B. Investigation of a self-assembled Sr0.74La0.26CoO3-δ-SrZr0.79Co0.21O3-δ composite with hierarchical structure as intermediate-temperature solid oxide fuel cell cathode. J Power Sources 2021;506. https://doi.org/10.1016/j.jpowsour.2021.230230.

[26]

Morales M, Roa JJ, Tartaj J, Segarra M. A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: from materials processing to electrical and thermo-mechanical properties. J Eur Ceram Soc 2016;36:1–16. https://doi.org/10.1016/j.jeurceramsoc.2015.09.025.

[27]

Zhou D, Yuan C, Chen X, Chen F, Xiong X, Liu Y, Yan J, Fujita T. A-site double-lanthanide-doped La1-xPrxBaCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. J Mater Sci 2022;57:14398–14412. https://doi.org/10.1007/s10853–022-07497-x.

[28]

Zhao L, Shen J, He B, Chen F, Xia C. Synthesis, characterization and evaluation of PrBaCo2-xFexO5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int J Hydrogen Energy 2011;36:3658–65. https://doi.org/10.1016/j.ijhydene.2010.12.064.

[29]

Wu M, Cai H, Jin F, Sun N, Xu J, Zhang L, Han X, Wang S, Su X, Long W, Wang L, Zhang L. Assessment of cobalt–free ferrite–based perovskite Ln0.5Sr0.5Fe0.9Mo0.1O3-δ (Ln = lanthanide) as cathodes for IT-SOFCs. J Eur Ceram Soc 2021;41:2682–90. https://doi.org/10.1016/j.jeurceramsoc.2020.11.035.

[30]

Lü S, Zhu Y, Fu X, Huang R, Guo Y, Zhang W, Li H, Hou L, Meng X. A-site deficient Fe-based double perovskite oxides PrxBaFe2O5+δ as cathodes for solid oxide fuel cells. J Alloys Compd 2022;911. https://doi.org/10.1016/j.jallcom.2022.165002.

[31]

Marin-Gamero R, Martinez de Irujo-Labalde X, Urones-Garrote E, Garcia-Martin S. Structural ordering supremacy on the oxygen reduction reaction of layered iron-perovskites. Inorg Chem 2020;59:5529–37. https://doi.org/10.1021/acs.inorgchem.0c00171.

[32]

Kim YN, Kim JH, Manthiram A. Effect of Fe substitution on the structure and properties of LnBaCo2-xFexO5+δ (Ln=Nd and Gd) cathodes. J Power Sources 2010;195:6411–9. https://doi.org/10.1016/j.jpowsour.2010.03.100.

[33]

Zou J, Park J, Kwak B, Yoon H, Chung J. Effect of Fe doping on PrBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics 2012;206:112–9. https://doi.org/10.1016/j.ssi.2011.10.025.

[34]

Mohamed SM, Sanad MMS, Mattar T, El-Shahat MF, Rossignol C, Dessemond L, Zaidat K, Obbade S. The structural, thermal and electrochemical properties of MnFe1+x-yCuxNiyCoO4 spinel protective layers in interconnects of solid oxide fuel cells (SOFCs). J Alloys Compd 2022;923. https://doi.org/10.1016/j.jallcom.2022.166351.

[35]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr 1976;32:751–67. https://doi.org/10.1107/s0567739476001551.

[36]

Teraoka HMZY, Okamoto K, Yamazoe N. Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ perovskite-type oxides. Mater Res Bull 1988;23:51–8. https://doi.org/10.1016/0025–5408(88)90224–3.

[37]

Jin F, Xu H, Long W, Shen Y, He T. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln=Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. J Power Sources 2013;243:10–8. https://doi.org/10.1016/j.jpowsour.2013.05.187.

[38]

Adler S, Chen X, Wilson J. Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J Catal 2007;245:91–109. https://doi.org/10.1016/j.jcat.2006.09.019.

[39]

Tai MMNL-W, Anderson HU, Sparlin DM, Sehlin SR. Structure and electrical-properties of La1-xSrxCo1-yFeyO3. Part2. The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics 1995;76:273–83. https://doi.org/10.1016/0167–2738(94)00245-N.

[40]

Meng G, Cao H, Wei T, Liu Q, Fu J, Zhang S, Luo J, Liu X. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022;58:11839–42. https://doi.org/10.1039/d2cc04591e.

[41]

Señarís-Rodríguez JBGMA. Magnetic and transport properties of the system La1-xSrxCoO3-δ (0<x≤0.5). J Solid State Chem 1995;118:323–36. https://doi.org/10.1006/jssc.1995.1351.

[42]

Huang K, Lee HY, Goodenough JB. Sr- and Ni-doped LaCoO3 and LaFeO3 perovskites: new cathode materials for solid-oxide fuel cells. J Electrochem Soc 1998;145:3220–7. https://doi.org/10.1149/1.1838789.

[43]

Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004;104:4791–4844. https://doi.org/10.1021/cr020724o.

[44]

Gaur K, Verma SC, Lal HB. Defects and electrical conduction in mixed lanthanum transition metal oxides. J Mater Sci 1988;23:1725–8. https://doi.org/10.1007/bf01115712.

[45]

Goodenough JB. Localized versus CollectivedElectrons and néel temperatures in perovskite and perovskite-related structures. Phys. Rev. 1967;164:785–9. https://doi.org/10.1103/PhysRev.164.785.

[46]

Teraoka Y, Zhang H-M, Furukawa S, Yamazoe N. Oxygen permeation through perovskite-type oxides. Chem Lett 1985;14:1743–6. https://doi.org/10.1246/cl.1985.1743.

[47]

Zhang Y, Chen Y, Yan M, Chen F. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J Power Sources 2015;283:464–77. https://doi.org/10.1016/j.jpowsour.2015.02.107.

[48]

Tarancón A, Skinner SJ, Chater RJ, Hernández-Ramírez F, Kilner JA. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 2007;17. https://doi.org/10.1039/b704320a.

[49]

Tsvetkova NS, Zuev AY, Tsvetkov DS. Investigation of GdBaCo2-x-FexO6-δ (x=0, 0.2)-Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells. J Power Sources 2013;243:403–8. https://doi.org/10.1016/j.jpowsour.2013.06.036.

[50]

Sonn ALV, Ivers-Tiffee E. Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/8YSZ cermet electrodes. J Electrochem Soc 2008;155:B675-B679. https://doi.org/10.1149/1.2908860.

[51]

Ivers-Tiffée JHaE. Detailed electrochemical study on nanoscaled La0.6Sr0.4CoO3-δ SOFC thin-film cathodes in dry, humid and CO2-containing atmospheres. J Electrochem Soc 2013;160:F1197-F1206. https://doi.org/10.1149/2.026311jes.

[52]

Wan TH, Saccoccio M, Chen C, Ciucci F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta 2015;184:483–99. https://doi.org/10.1016/j.electacta.2015.09.097.

[53]

Xia J, Wang C, Wang X, Bi L, Zhang Y. A perspective on DRT applications for the analysis of solid oxide cell electrodes. Electrochim Acta 2020;349. https://doi.org/10.1016/j.electacta.2020.136328.

[54]

Chen D, Ran R, Zhang K, Wang J, Shao Z. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte. J Power Sources 2009;188:96–105. https://doi.org/10.1016/j.jpowsour.2008.11.045.

[55]

Escudero MJ, Aguadero A, Alonso JA, Daza L. A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 2007;611:107–16. https://doi.org/10.1016/j.jelechem.2007.08.006.

[56]

Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 1990;2:132–8. https://doi.org/10.1002/adma.19900020304.

[57]

Jørgensen MJ, Mogensen M. Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J Electrochem Soc 2001;148. https://doi.org/10.1149/1.1360203.

[58]

Howe AT, Fleisch TH. Photoelectrochemical cells of the electrolyte-metal-insulator-semiconductor (EMIS) configuration: Ⅱ. Use of non-native oxides in Pt/oxide/n-Si systems. J Electrochem Soc 2019;134:72–6. https://doi.org/10.1149/1.2100439.

[59]

Gao S, Wei T, Sun J, Liu Q, Ma D, Liu W, Zhang S, Luo J, Liu X. Atomically dispersed metal-based catalysts for Zn–CO2 Batteries. Small Struct 2022;3. https://doi.org/10.1002/sstr.202200086.

Journal of Materiomics
Pages 825-837
Cite this article:
Chen F, Zhou D, Xiong X, et al. Doping strategy on improving the overall cathodic performance of double perovskite LnBaCo2O5+δ (Ln=Pr, Gd) as potential SOFC cathode materials. Journal of Materiomics, 2023, 9(5): 825-837. https://doi.org/10.1016/j.jmat.2023.02.004

135

Views

7

Crossref

11

Web of Science

14

Scopus

Altmetrics

Received: 13 December 2022
Revised: 08 February 2023
Accepted: 13 February 2023
Published: 03 March 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return