AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Potassium tantalate niobate crystals: Efficient quadratic electro-optic materials and their laser modulation technology

Xuping Wanga,b( )Xinguo MaoaPan ChenbQian DuaYuguo Yanga,bPanyu QiaoaShaodong ZhangaZhijian LiaRui ZhangaBing Liua( )Jiyang Wangc
Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Jinan, 250014, China
State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Electro-optic (EO) crystals are important material for all-solid-state laser technology, which can be used to fabricate various laser modulators, such as EO switches, laser deflectors, and optical waveguide. The improvements in new high-efficiency EO crystal materials have held great significance to the development of laser technology. Potassium tantalate niobate (KTN) is a popular multifunctional crystal because of its remarkable and excellent quadratic EO effect. KTN EO modulation technology offers numerous advantages, such as high efficiency, good stability, a quick response time, and inertia-free characteristics. In this paper, we summarize the research progress of KTN series crystals systemically, including the theoretical exploration on quadratic EO effect, solid-melt crystal growth technique, comprehensive physical characterization, new physical effect and mechanisms exploration, new EO devices development and design. The EO modulation technique based on the Kerr effect of KTN series crystal offers obvious advantages in reducing the drive voltage and device size, which could better meet the developmental needs of future lasers with a wide wavelength, miniaturization, and integration. This may provide theoretical guidance and an experimental basis for the design and development of new EO crystal devices and promote the development of laser technology.

References

[1]

Fujiura K, Nakamura K. KTN optical waveguide devices with an extremely large electro-optic effect. Proc SPIE 2005;5623:518–32.

[2]

Toyoda S, Fujiura K, Sasaura M, Enbutsu K, Tate A, Shimokozono M, et al. Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides. Jpn J Appl Phys 2004;43:5862–6.

[3]

Yagi S. KTN crystals open up new possibilities and applications. NTT Tech Rev 2009;7(12):1–5.

[4]

Di M, Falsi L, Flammini M, Pierangeli D, Di P, Agranat A, et al. Giant broadband refraction in the visible in a ferroelectric perovskite. Nat Photonics 2018;12(12):734–8.

[5]

Chen C, Chao J, Lee Y, Shang A, Liu R, Yin S, et al. Enhanced electric-optic beam deflection of relaxor ferroelectric KTN crystals by electric-field-induced high permittivity. Opt Lett 2019;44(22):5557–60.

[6]

Zhu W, Chao J, Wang C, Yao J, Yin S. Design and implementation of super broadband high speed waveguide switches. Proc SPIE 2015;9586:165–73.

[7]

Gong D, Wang C, Wang X, Zhou Z. Static volumetric three-dimensional display based on an electric-field-controlled two-dimensional optical beam scanner. Appl Opt 2019;58(26):7067–72.

[8]

Treibwasser S. Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3. Phys Rev 1959;114(1):63–70.

[9]

Genusic J, Kurtz S, Nelson T, Wemple S. Nolinear dielectric properties of KTaO3 near its Curie point. Appl Phys Lett 1963;2(10):185–7.

[10]

Chen F, Geusic J, Kurtz S, Skinner J, Wemple S. Light modulation and beam deflection with potassium tantalate-niobate crystals. J Appl Phys 1966;37(1):388–97.

[11]

Chen F. A laser-induced inhomogeneity of refractive indices in KTN. J Appl Phys 1967;38(8):3418–20.

[12]

Dugan A, Doyle W, Sutton P. KTN concentration gradient light beam deflector. Appl Opt 1968;7(3):556–8.

[13]

Rytz D, Scheel H. Crystal growth of KTa1-xNbxO3 (0<x<0.04) solid solutions by a slow-cooling method. J Cryst Growth 1982;59(3):468–84.

[14]

Scheel H, Swendsen R. Evaluation of experimental parameters for growth of homogeneous solid solutions. J Cryst Growth 2001;233(3):609–17.

[15]

Scheel H. Theory and technology of growing striation-free crystals. J Kor Cryst Growth C 2004;14(4):174–86.

[16]

Sawaki M, Motai H. Successful preparation of KTN crystals with the highest reported electro-optic effect and the potential for providing a great improvement in optical device performance. NTT Tech Rev 2003;1(9):56–8.

[17]

Nakamura R, Kanematsu Y. Femtosecond spectral snapshots based on electronic optical Kerr effect. Rev Sci Instrum 2004;75(3):636–44.

[18]

Fujiura K, Nakamura K. KTN optical waveguide devices with an extremely large electro-optic effect. Proc SPIE 2005;5623:518–32.

[19]

Yagi S. KTN crystals open up new possibilities and applications. NTT Tech Rev 2009;7(12):1–5.

[20]

Chang Y, Zhu W, Chao J, Yin S, Hoffman R, Mott A, et al. Super broadband ultrafast waveguide switches based on dynamic waveguiding effect. Proc SPIE 2014;9200:156–62.

[21]

Chang Y, Wang C, Yin S, Hoffman R, Mott A. Giant electro-optic effect in nanodisordered KTN crystals. Opt Lett 2013;38(22):4574–7.

[22]

Chang Y, Wang C, Yin S, Hoffman R, Mott A. Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals. Opt Express 2013;21(15):17760–8.

[23]

Zhu W, Chao J, Chen C, Yin S, Hoffman R. Multi-scanning mechanism enabled rapid non-mechanical multi-dimensional KTN beam deflector. Proc SPIE 2016;9958:132–8.

[24]

Zhu W, Chao J, Chen C, Yin S, Hoffman R. Three order increase in scanning speed of space charge-controlled KTN deflector by eliminating electric field induced phase transition in nanodisordered KTN. Sci Rep 2016;6(1):1–10.

[25]

Zhu W, Chao J, Chen C, Shang A, Lee Y, Yin S, et al. Photon excitation enabled large aperture space-charge-controlled potassium tantalate niobate beam deflector. Appl Phys Lett 2018;112(13):132901.

[26]

Chen C, Zhu W, Chao J, Shang A, Lee Y, Liu R, et al. Study of thermal and spatial dependent electric field-induced phase transition in relaxor ferroelectric crystals using Raman spectroscopy. J Alloys Compd 2019;804:35–41.

[27]

Wang X, Wang J, Yu Y, Zhang H, Boughton R. Growth of cubic KTa1-xNbxO3 crystal by Czochralski method. J Cryst Growth 2006;293(2):398–403.

[28]

Wang X, Liu B, Yang Y, Zhang Y, Wang. Growth of KTN crystals by double crucible Czochralski method. Mater Res Innovat 2014;18(5):334–9.

[29]

Wang X, Liu B, Yang Y, Zhang Y, Lv X, Wei L. Preparation and laser modulation investigation of quadratic electro-optical crystal Cu: KTN with gradient refractivity effect. J Cryst Growth 2017;468:356–60.

[30]

Wu Y, Wang X, Tian G, Zheng L, Liang F, Zhang S, et al. Inverse design of ferroelectric-order in perovskite crystal for self-powered ultraviolet photodetection. Adv Mater 2022;34(9):2105108.

[31]

Wang X, Liu B, Yang Y, Zhang Y, Lv X, Hong G, et al. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal. Appl Phys Lett 2014;105(5):051910.

[32]

Liu B, Zhang X, Yang Y, Lv X, Wei L, Wang X, et al. Influence of copper oxide on properties of potassium tantalate niobate single crystals. Ceram Int 2016;42(13):15091–3.

[33]

Yu H, Hu Y, Zhang H, Zhang C, Qiu C, Wang X, et al. Synthesis and characterization of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 nanocrystallines. Mater Lett 2018;216:77–80.

[34]

Yu H, Liu B, Zhang Y, Lv X, Wei L, Hu Y, et al. Growth process of KTa0.65Nb0.35O3 single crystals and the influence of Cu-doping. J Cryst Growth 2020;535:125565.

[35]

Imai T, Sasaura M, Nakamura K, Fujiura K. Crystal growth and electro-optic properties of KTa1-xNbxO3. NTT Tech Rev 2007;5(9):1–8.

[36]

Wang X, Li Q, Yang Y, Zhang Y, Lv X, Wei L, et al. Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals. J Mater Sci Mater Electron 2016;27(12):13075–9.

[37]

Zhang H, Yang L, Qiu C, Liu B, Li J, Zhang Y, et al. First-principles calculation of defect properties on copper doped KTaO3 crystal. ECS J Solid State Sc 2021;10(1):014009.

[38]

Yang C, Wang X, Zhang F, Zhang H, Liu B, Li J, et al. Electro-optic intensity modulation in Fe-doped KTa0.65Nb0.35O3 crystals. Crystals 2020;10(10):870.

[39]

Hu Y, Yu H, Zhang H, Wang X, Yang Y, Liu B, et al. Influence of mineral compositions on properties of KTa1-xNbxO3 single crystals grown by top-seeded growth solution method. Ferroelectrics 2018;536(1):99–104.

[40]

Wang X, Wang J, Liu B. Study on composition uniformity of KTN crystals growth by Czochralski method. J Synth Cryst 2010;39:48–53.

[41]

Wang L, Wang X, Chen F, Wang K, Lu F, Zhang H, et al. Optical properties of KTaxNb1-xO3 waveguides formed by carbon and proton implantation. Jpn J Appl Phys 2009;46:5885–8.

[42]
Wang X. Growth and properties investigation of KTN series crystals. In: Dissertation for doctorate. Jinan: Shandong University; 2008.
[43]

Borsella E, Vecchio A, Garcìa M, Sada C. Copper doping of silicate glasses by the ion-exchange technique: a photoluminescence spectroscopy study. J Appl Phys 2002;91(1):90–8.

[44]

Gonella F, Caccavale F, Quaranta A, Sambo A. Copper-doped ion-exchanged waveguide characterization. J Mod Opt 1998;45(4):837–45.

[45]

Wang X, Wang J, Liu B. Growth and properties of cubic potassium tantalate niobate crystals. Adv Mater Res 2011;306:352–7.

[46]

Sang S, Yuan Z, Zheng L, Sun E, Zhang R, Wang J, et al. Optical transmittance and Raman scattering studies of (K, Na)(Nb, Ta)O3 single crystal. Opt Mater 2015;45:104–8.

[47]

Wang G, Chen X, Yuan H, Kuang A, Chen H. XYO3 (X=K, Na; Y=Nb, Ta) based superlattices for photocatalysis. Phys Status Solidi (C) 2017;14(5):1700026.

[48]

Wang X, Yang Y, Zhang Y, Lv X, Wei L, Yu H, et al. Photocurrent properties of KTa0.65Nb0.35O3 crystal grown by Czochralski method. Opt Mater 2015;46:175–8.

[49]

Geusic J, Kurtz S, Uitert L, Wemple S. Electro-optic properties of some ABO3 perovskites in the paraelectric phase. Appl Phys Lett 1964;4(8):141–3.

[50]

Tang Y, Wang J, Wang X, Duan B, Tang S, Foshee J. KTN based electro-optic beam scanner. Proc SPIE 2008;7135:713538.

[51]

Parravicini J, Di M, Conti C, Agranat A, DelRe E. Diffraction cancellation over multiple wavelengths in photorefractive dipolar glasses. Opt Express 2011;19(24):24109–14.

[52]
Chang Y. Field-induced and nanodisordered KTN crystals: properties, devices, and applications. In: Dissertation for doctor of philosophy. Pennsylvania State University; 2014.
[53]

Wang J, Guan Q, Wei J, Wang M, Liu Y. Growth and characterization of Cubic KTN crystals. J Cryst Growth 1992;116(1–2):27–36.

[54]

Abdulraheem Y, Gentile A, Stafsudd O. The effects of iron as a dopant on the dielectric properties of ferroelectric potassium tantalite niobate (KTaxNb1-xO3). J Appl Phys 2006;100(10):104111.

[55]

Fay H. Characterization of potassium-tantalate-niobate crystals by electrooptic measurements. Mater Res Bull 1967;2(7):499–507.

[56]

Nakamura K, Miyazub J, Sasaki Y, Imai T, Sasaura M, Fujiura K. Spacecharge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction. J Appl Phys 2008;104(1):013105.

[57]
Itoh T, Sasaura M, Toyoda S, Manabe K, Nakamura K, Fujiura K. High-frequency response of electro-optic single crystal KTaxNb1-xO3 in paraelectric phase. In: Quantum electronics and laser science conference. Optical Society of America; 2005. JTuC36.
[58]

Nakamura K, Miyazu J, Sasaura M, Fujiura K. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3. Appl Phys Lett 2006;89(13):131115.

[59]

Romer G, Bechtold P. Electro-optic and acousto-optic laser beam scanners. Phys Procedia 2014;56:29–39.

[60]

Nakamura K, Miyazu J, Yagi S. High-resolution KTN optical beam scanner. NTT Tech Rev 2009;7(12).

[61]

Imai T, Yagi S, Toyoda S, Sasaura M. Fast varifocal lenses based on KTa1-xNbxO3 (KTN) single crystals. NTT Tech Rev 2009;7(12).

[62]

Wang X, Liu B, Yang Y, Zhang Y, Lv X, Hong G, et al. Anomalous laser deflection phenomena based on the interaction of electro-optic and graded refractivity effect in Cu:KTN crystal. Proc SPIE 2014;9297:304–9.

[63]

Yang L, Liu B, Qiao P, Yu H, Wang X, Li J, et al. Measurement of the quadratic electro-optic coefficient of KTN crystal with an electro-optic modulation system in the presence of polar nano-regions. Crystals 2021;11(10):1234.

[64]

Zhang J, Du X, Wang X, Zhao J, Liu B, Lv X, et al. Super electro-optic modulation in bulk KTN:Cu based on electric-field-enhanced permittivity. Opt Lett 2021;46(17):4192–5.

[65]

Zhang J, Du X, Wang X, Zhao J, Song Y, Liu B, et al. Electric-field-enhanced permittivity dependence on temperature and cooling rate. Appl Phys A-Mater 2021;127(5):1–7.

[66]

Lu Q, Li B, Dai H, Ge B, Han J. In situ observation and monitoring of the dynamic behavior of field-induced photorefractive grating formation process with digital holographic microscopy. Opt Mater Express 2016;6(9):2991–3000.

[67]

Zhang X, He S, Zhao Z, Wu P, Wang X, Liu H. Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient. Sci Rep 2018;8(1):1–7.

[68]

Gong D, Liang Y, Ou W, Wang J, Wu Y, Liu B, et al. Electric-field-controlled optical switch using Kerr effect and gradient of the composition ratio Nb/(Ta+Nb). Mater Res Bull 2016;75:7–12.

[69]

Zhang X, Yang Q, Liu H, Wang X, He S, Li X, et al. Switching effects of spontaneously formed superlattices in relaxor ferroelectrics. Opt Mater Express 2019;9(10):4081–9.

[70]

Lv X, Zhao J, Wang X, Du X, Liu B, Song Y, et al. Maximizing modulation contrast of KTN electro-optic modulator. Opt Laser Eng 2022;149:106821.

[71]

Zhang F, Liu B, Yang C, Hu Y, Zhang H, Li Q, et al. Characterization of temperature-dependent superlattice in Cu:KTN crystal. Mater Res Express 2020;7(12):126202.

[72]

Yang Q, Zhang X, Liu H, Wang X, Ren Y, He S, et al. Dynamic relaxation process of a 3D super crystal structure in a Cu:KTN crystal. Chin Opt Lett 2020;18(2):021901.

[73]

Liu B, Zhang H, Zhang Y, Lv X, Yang Y, Wei L, et al. Growth and laser modulation properties of KTa0.63Nb0.37O3 single crystals. Acta Phys Pol, A 2019;135(3):396–400.

[74]

Okabe Y, Ueno M, Sasaki Y, Sakamoto T, Toyoda S, Kobayashi J, et al. Three-dimensional high-speed optical coherence tomography system using KTN swept light source. Electron Lett 2013;49(16):981–2.

[75]

Xu J, Zhi Y, Wang X, Sun J, Zhou Y, Dai E, et al. A large-angle high speed scanner based on electro-optic crystal for Fresnel telescope synthetic aperture imaging ladar. Proc SPIE 2012;8520:230–6.

[76]

Nakamura K. Optical beam scanner using Kerr effect and space-charge-controlled electrical conduction in KTa1-xNbxO3 crystal. NTT Tech Rev 2007;5(9).

[77]

Fujiura K, Sasaura M. KTaO3 solid immersion lens for nearfield optical disk system. NTT Tech Rev 2007;5(9).

[78]

Yagi S. KTN crystals open up new possibilities and applications. NTT Tech Rev 2009;7(12):1–5.

[79]

Li C, Wang X, Wu Y, Liang F, Wang F, Zhao X, et al. Three-dimensional nonlinear photonic crystal in naturally grown potassium–tantalate–niobate perovskite ferroelectrics. Light Sci Appl 2020;9(1):1–8.

[80]

Song Y, Zhao J, Wang B, Wang X, Liu B, Lv X, et al. Potassium tantalate niobate (KTN) crystal-based polarization-modulated 3D ladar with a large field of view. Opt Lett 2020;45(19):5319–22.

[81]

Fu Y, Wei L, Zhang H, Wang X, Liu B, Zhang Y, et al. Phonon anharmonic investigation on the different structural phase transition processes of cubic KNbO3 and KTaO3. Results Phys 2020;19:103591.

[82]

Li X, Yang Q, Zhang X, He S, Wang X, Liu H, et al. High transparency induced by electric fields using KTN crystals. J Alloys Compd 2020;842:155702.

[83]

He S, Yang Q, Li X, Liu H, Cao L, Akhmadaliev S, et al. Para-ferroelectric phase transition driven by swift heavy-ion irradiation in KTN crystal. Appl Surf Sci 2020;519:146261.

Journal of Materiomics
Pages 838-854
Cite this article:
Wang X, Mao X, Chen P, et al. Potassium tantalate niobate crystals: Efficient quadratic electro-optic materials and their laser modulation technology. Journal of Materiomics, 2023, 9(5): 838-854. https://doi.org/10.1016/j.jmat.2023.02.006

240

Views

8

Crossref

8

Web of Science

9

Scopus

Altmetrics

Received: 05 January 2023
Revised: 13 February 2023
Accepted: 14 February 2023
Published: 16 March 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return