AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Intrinsic ferroelectrics and carrier doping-induced metallic multiferroics in an atomic wire

Tao Xua,b,1Jingtong Zhangc,d,1Chunyu WangeXiaoyuan WangeTakahiro ShimadabJie Wangc,d,( )Hongxin Yanga,( )
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto, 615-8540, Japan
Department of Engineering Mechanics, School of Aeronautics and Astronautics Zhejiang University, Hangzhou, 310027, China
Zhejiang Laboratory, Hangzhou, 311100, Zhejiang, China
Key Laboratory of Pressure Systems and Safety Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China

1 T.X. and J.T.Z. contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Low-dimensional multiferroic metals characterized by the simultaneous coexistence of ferroelectricity, conductivity, and magnetism hold tremendous potential for scientific and technological endeavors. However, the mutually exclusive mechanisms among these properties impede the discovery of multifunctional conducting multiferroics, especially at the atomic-scale. Here, based on first-principles calculations, we design and demonstrate intrinsic one-dimensional (1D) ferroelectrics and carrier doping-induced metallic multiferroics in an atomic WOF4 wire. The WOF4 atomic wire that can be derived from a 1D van der Waals crystal exhibits pronounced ferroelectricity manifested in the form of large cooperative atomic displacements. By performing Monte Carlo simulations with an effective Hamiltonian method, we obtain the nanowire that can sustain a high Curie temperature, indicating its potential for room-temperature applications. Moreover, doping with electrons is found to induce magnetism and metallic conductivity that coexists with the ferroelectric distortion in the nanowire. These appealing properties in conjunction with the experimental feasibility enable the doped WOF4 nanowire to act as a promising atomic-scale multifunctional material.

References

[1]

Lines ME, Glass AM, Burns G. Principles and applications of ferroelectrics and related materials. Phys Today 1978;31:56–8. https://doi.org/10.1063/1.2995188.

[2]
Scott JF. Ferroelectric memories. first ed. Heidelberg: Springer Berlin; 2000. https://doi.org/10.1007/978–3-662–04307-3.
[3]

Ali T, Lehninger D, Lederer M, Li S, Kühnel K, Mart C, et al. Tuning hyrbrid ferroelectric and antiferroelectric stacks for low power FeFET and FeRAM applications by using laminated HSO and HZO films. Adv Electron Mater 2022;8:2100837. https://doi.org/10.1002/aelm.202100837.

[4]

Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L. Discovery of stable skyrmionic state in ferroelectric nanocomposites. Nat Commun 2015;6:8542. https://doi.org/10.1038/ncomms9542.

[5]

Shimada T, Xu T, Uratani Y, Wang J, Kitamura T. Unusual multiferroic phase transitions in PbTiO3 nanowires. Nano Lett 2016;16:6774–9. https://doi.org/10.1021/acs.nanolett.6b02370.

[6]

Wang J, Xu T, Shimada T, Wang X, Zhang TY, Kitamura T. Chiral selectivity of improper ferroelectricity in single-wall PbTiO3 nanotubes. Phys Rev B 2014;89:144102. https://doi.org/10.1103/PhysRevB.89.144102.

[7]

Cheema SS, Kwon D, Shanker N, dos Reis R, Hsu SL, Xiao J, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020;580:478–82. https://doi.org/10.1038/s41586–020-2208-x.

[8]

Liu J, Ji Y, Yuan S, Ding L, Chen W, Zheng Y. Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires. NPJ Comput Mater 2018;4:78. https://doi.org/10.1038/s41524–018-0135–2.

[9]

II Naumov, Bellaiche L, Fu H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 2004;432:737–40. https://doi.org/10.1038/nature03107.

[10]

Polking MJ, Han MG, Yourdkhani A, Petkov V, Kisielowski CF, Volkov VV, et al. Ferroelectric order in individual nanometre-scale crystals. Nat Mater 2012;11:700–9. https://doi.org/10.1038/nmat3371.

[11]

Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016;353:274–8. https://doi.org/10.1126/science.aad8609.

[12]

Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater 2017;2:17033. https://doi.org/10.1038/natrevmats.2017.33.

[13]

Hu Z, Ding Y, Hu X, Zhou W, Yu X, Zhang S. Recent progress in 2D group Ⅳ–Ⅳ monochalcogenides: synthesis, properties and applications. Nanotechnology 2019;30:252001. https://doi.org/10.1088/1361–6528/ab07d9.

[14]

Di Sante D, Stroppa A, Barone P, Whangbo MH, Picozzi S. Emergence of ferroelectricity and spin-valley properties in two-dimensional honeycomb binary compounds. Phys Rev B 2015;91:161401. https://doi.org/10.1103/PhysRevB.91.161401.

[15]

Liu M, Artyukhov VI, Yakobson BI. Mechanochemistry of one-dimensional boron: structural and electronic transitions. J Am Chem Soc 2017;139:2111–7. https://doi.org/10.1021/jacs.6b12750.

[16]

Park C, Kim SW, Yoon M. First-principles prediction of new electrides with nontrivial band topology based on one-dimensional building blocks. Phys Rev Lett 2018;120:026401. https://doi.org/10.1103/PhysRevLett.120.026401.

[17]

Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 2001;292:2462–5. https://doi.org/10.1126/science.106047.

[18]

Yang C, Chen M, Li S, Zhang X, Hua C, Bai H, et al. Coexistence of ferroelectricity and ferromagnetism in one-dimensional SbN and BiN nanowires. ACS Appl Mater Interfaces 2021;13:13517–23. https://doi.org/10.1021/acsami.0c20570.

[19]

Zhang L, Tang C, Sanvito S, Du A. Purely one-dimensional ferroelectricity and antiferroelectricity from van der Waals niobium oxide trihalides. NPJ Comput Mater 2021;7:135. https://doi.org/10.1038/s41524–021-00602–9.

[20]

Zhang JJ, Guan J, Dong S, Yakobson BI. Room-temperature ferroelectricity in group-Ⅳ metal chalcogenide nanowires. J Am Chem Soc 2019;141:15040–5. https://doi.org/10.1021/jacs.9b03201.

[21]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558–61. https://doi.org/10.1103/PhysRevB.47.558.

[22]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169–86. https://doi.org/10.1103/PhysRevB.54.11169.

[23]

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 2006;27:1787–99. https://doi.org/10.1002/jcc.20495.

[24]

Ernzerhof M, Scuseria GE. Assessment of the perdew–burke–ernzerhof exchange-correlation functional. J Chem Phys 1999;110:5029–36. https://doi.org/10.1063/1.478401.

[25]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003;118:8207–15. https://doi.org/10.1063/1.1564060.

[26]

Heyd J, Scuseria GE, Ernzerhof M. Erratum: “hybrid functionals based on a screened coulomb potential” [J chem phys 2003;118:8207]. J Chem Phys 2006;124:219906. https://doi.org/10.1063/1.2204597.

[27]

Oba F, Togo A, Tanaka I, Paier J, Kresse G. Defect energetics in ZnO: a hybrid Hartree-Fock density functional study. Phys Rev B 2008;77:245202. https://doi.org/10.1103/PhysRevB.77.245202.

[28]

Shimada T, Ueda T, Wang J, Kitamura T. Hybrid Hartree-Fock density functional study of charged point defects in ferroelectric PbTiO3. Phys Rev B 2013;87:174111. https://doi.org/10.1103/PhysRevB.87.174111.

[29]

Xu T, Shimada T, Araki Y, Wang J, Kitamura T. Defect-strain engineering for multiferroic and magnetoelectric properties in epitaxial (110) ferroelectric lead titanate. Phys Rev B 2015;92:104106. https://doi.org/10.1103/PhysRevB.92.104106.

[30]

Janotti A, Varley JB, Rinke P, Umezawa N, Kresse G, Van de Walle CG. Hybrid functional studies of the oxygen vacancy in TiO2. Phys Rev B 2010;81:085212. https://doi.org/10.1103/PhysRevB.81.085212.

[31]

Shimada T, Xu T, Araki Y, Wang J, Kitamura T. Unusual metallic multiferroic transitions in electron-doped PbTiO3. Adv Electron Mater 2017;3:1700134. https://doi.org/10.1002/aelm.201700134.

[32]

Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 2000;113:9978–85. https://doi.org/10.1063/1.1323224.

[33]

Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 2008;78:134106. https://doi.org/10.1103/PhysRevB.78.134106.

[34]

Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. Apl Mater 2013;1:011002. https://doi.org/10.1063/1.4812323.

[35]

Cheon G, Duerloo KAN, Sendek AD, Porter C, Chen Y, Reed EJ. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett 2017;17:1915–23. https://doi.org/10.1021/acs.nanolett.6b05229.

[36]

Lu F, Cui J, Liu P, Lin M, Cheng Y, Liu H, et al. High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states. Chin Phys B 2021;30:057304. https://doi.org/10.1088/1674–1056/abdb1a.

[37]

Lin LF, Zhang Y, Moreo A, Dagotto E, Dong S. Quasi-one-dimensional ferroelectricity and piezoelectricity in WOX4 halogens. Phys Rev Mater 2019;3:111401. https://doi.org/10.1103/PhysRevMaterials.3.111401.

[38]

Vasylenko A, Marks S, Wynn JM, Medeiros PVC, Ramasse QM, Morris AJ, et al. Electronic structure control of sub-nanometer 1D SnTe via nanostructuring within single-walled carbon nanotubes. ACS Nano 2018;12:6023–31. https://doi.org/10.1021/acsnano.8b02261.

[39]

Zhuang HL, Hennig RG. Computational search for single-layer transition-metal dichalcogenide photocatalysts. J Phys Chem C 2013;117:20440–5. https://doi.org/10.1021/jp405808a.

[40]

Xu T, Shimada T, Araki Y, Mori M, Fujimoto G, Wang J, et al. Electron engineering of metallic multiferroic polarons in epitaxial BaTiO3. NPJ Comput Mater 2019;5:23. https://doi.org/10.1038/s41524–019-0163–6.

[41]

Shimada T, Xu T, Araki Y, Wang J, Kitamura T. Multiferroic dislocations in ferroelectric PbTiO3. Nano Lett 2017;17:2674–80. https://doi.org/10.1021/acs.nanolett.7b00505.

[42]

Shimada T, Umeno Y, Kitamura T. Ab initio study of stress-induced domain switching in PbTiO3. Phys Rev B 2008;7:094105. https://doi.org/10.1103/PhysRevB.77.094105.

[43]

Samad A, Kim HJ, Shin YH. Stability, spontaneous and induced polarization in monolayer MoC, WC, WS, and WSe. J Phys Condens Matter 2018;31:045301. https://doi.org/10.1088/1361–648X/aaf14d.

[44]

Liu Z, Sun Y, Singh DJ, Zhang L. Switchable out-of-plane polarization in 2D LiAlTe2. Adv electron mater 2019;5:1900089. https://doi.org/10.1002/aelm.201900089.

[45]

Janolin PE. Strain on ferroelectric thin films. J Mater Sci 2009;44:5025–48. https://doi.org/10.1007/s10853–009-3553–1.

[46]

Xu T, Wang X, Mai J, Zhang J, Wang J, Zhang TY. Strain engineering for 2D ferroelectricity in lead chalcogenides. Adv Electron Mater 2020;6:1900932. https://doi.org/10.1002/aelm.201900932.

[47]

Iwazaki Y, Suzuki T, Mizuno Y, Tsuneyuki S. Doping-induced phase transitions in ferroelectric BaTiO3 from first-principles calculations. Phys Rev B 2012;86:214103. https://doi.org/10.1103/PhysRevB.86.214103.

[48]

Liang J, Wang W, Du H, Hallal A, Garcia K, Chshiev M. Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states. Phys Rev B 2020;101:184401. https://doi.org/10.1103/PhysRevB.101.184401.

[49]

Miao N, Xu B, Zhu L, Zhou J, Sun Z. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc 2018;140:2417–20. https://doi.org/10.1021/jacs.7b12976.

[50]

Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature 2006;442:759–65. https://doi.org/10.1038/nature05023.

[51]

Ke C, Huang J, Liu S. Two-dimensional ferroelectric metal for electrocatalysis. Mater Horiz 2021;8:3387–93. https://doi.org/10.1039/D1MH01556G.

[52]

Grinberg I, West DV, Torres M, Gou G, Stein DM, Wu L, et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013;503:509–12. https://doi.org/10.1038/nature12622.

[53]

Bauer E, Rogl G, Chen XQ, Khan RT, Michor H, Hilscher G, et al. Unconventional superconducting phase in the weakly correlated noncentrosymmetric Mo3Al2C compound. Phys Rev B 2010;82:064511. https://doi.org/10.1103/PhysRevB.82.064511.

[54]
Bauer E, Sigrist M. Non-centrosymmetric superconductors. first ed. Heidelberg: Springer Berlin; 2012. https://doi.org/10.1007/978–3-642–24624-1.
[55]

Mineev VP, Yoshioka Y. Optical activity of noncentrosymmetric metals. Phys Rev B 2010;81:094525. https://doi.org/10.1103/PhysRevB.81.094525.

[56]

Edelstein VM. Features of light reflection off metals with destroyed mirror symmetry. Phys Rev B 2011;83:113109. https://doi.org/10.1103/PhysRevB.83.113109.

[57]

Puggioni D, Rondinelli JM. Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy. Nat Commun 2014;5:3432. https://doi.org/10.1038/ncomms4432.

Journal of Materiomics
Pages 892-898
Cite this article:
Xu T, Zhang J, Wang C, et al. Intrinsic ferroelectrics and carrier doping-induced metallic multiferroics in an atomic wire. Journal of Materiomics, 2023, 9(5): 892-898. https://doi.org/10.1016/j.jmat.2023.02.012

135

Views

4

Crossref

3

Web of Science

4

Scopus

Altmetrics

Received: 05 January 2023
Revised: 31 January 2023
Accepted: 14 February 2023
Published: 21 March 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return