Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Phase and domain engineering strategy for enhancement of piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics

Muhammad HabibaXuefan Zhoua()Lin TangaGuoliang XueaFazli AkrambMeshal AlzaidcDou Zhanga()
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
Department of Chemistry, Clark Atlanta University, Atlanta, GA, 30314, United States
Department of Physics, College of Science, Jouf University, Al-Jouf, Sakaka, P.O. Box 2014, Saudi Arabia

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Lead-free BiFeO3-BaTiO3 ceramics attract widespread attention over the last two decades due to their high Curie temperature (TC) and excellent piezoelectric performance. Here, in the Nd-modified 0.67BiFeO3-0.33BaTiO3 ceramics, an excellent piezoelectric constant (d33) of 325 pC/N was achieved by applying a novel poling method (AC-bias + DC-bias) with a high TC of 455 ℃. In addition, an ultrahigh normalized piezoelectric strain (d33* = Smax/Emax) of 808 pm/V was obtained at the normal/typical and relaxor-ferroelectrics phase boundary simultaneously with good thermal stability (Δd33*(T) ≈ 20%) in the temperature range of 25–125 ℃. The piezoelectric force microscopy results show the domain miniaturization from micro to nanoscale/polar nano-regions due to local structure heterogeneity caused by Nd doping. The mechanism for the giant piezoelectric strain is attributed to the thermal quenching, nano-domains, and reverse switching of the short-range order to the long-range order under the applied electric field. The strategic design of domain engineering and a proposed model for the high piezoelectricity is successfully supported by the phenomenological relation and Gibbs free energy profile. In this work, a new lead-free single-element modified BiFeO3-BaTiO3 ceramics was developed by applying a synergistic approach of domain engineering and phase boundary for the high-temperature piezoelectric performance.

References

[1]

Liu Z, Wu H, Yuan Y, Wan H, Luo Z, Gao P, et al. Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications. Curr Opin Solid State Mater Sci 2022;26(5):101016.

[2]

Banerjee K, Asthana S. Resolution of ambiguity between the depolarization and ferroelectric–relaxor transition temperature through dielectric studies in lead-free perovskite K0.5Bi0.5TiO3. Mater Chem Phys 2019;231:344-50.

[3]

Wang D, Fan Z, Rao G, Wang G, Liu Y, Yuan C, et al. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy 2020;76:104944.

[4]

Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater 2018;17(4):349.

[5]

Li F, Zhang S, Damjanovic D, Chen LQ, Shrout TR. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv Funct Mater 2018;28(37):1801504.

[6]

Chen L, Deng S, Liu H, Wu J, Qi H, Chen J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat Commun 2022;13(1):1-8.

[7]

Li Q, Liu Y, Liu J, Song K, Guo H, Li F, et al. Enhanced piezoelectric properties and improved property uniformity in Nd-doped PMN-PT relaxor ferroelectric single crystals. Adv Funct Mater 2022;32(25):2201719.

[8]

Lv X, Wu J. Nano-domains in lead-free piezoceramics: a Review. J Mater Chem 2020;8(20):10026-73.

[9]

Narayan B, Malhotra JS, Pandey R, Yaddanapudi K, Nukala P, Dkhil B, et al. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat Mater 2018;17(5):427-31.

[10]

Lu Y-Q, Li Y-X. A review on lead-free piezoelectric ceramics studies in China. J Adv Dielectr. 2011;1(3):269-88.

[11]

Zhou X, Xue G, Luo H, Bowen CR, Zhang D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog Mater Sci 2021;122:100836.

[12]

Lv X, Zhu J, Xiao D, Zhang X-x, Wu J. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem Soc Rev 2020;49:671-707.

[13]

Wu J, Xiao D, Zhu J. Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115(7):2559-95.

[14]

Wang Z, Huangfu G, Xiao H, Guo Y. Excellent thermal stability and enhanced piezoelectric performance of Bi(Ni2/3Nb1/3)O3-modified BiFeO3–BaTiO3 ceramics. J Am Ceram Soc 2022;105(1):317-26.

[15]

Calisir I, Amirov AA, Kleppe AK, Hall DA. Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La3+ substitution strategy. J Mater Chem 2018;6(13):5378-97.

[16]

Habib M, Lee MH, Kim DJ, Choi HI, Kim M-H, Kim W-J, et al. Ferroelectric and piezoelectric properties of BiFeO3–based piezoelectric ceramics. Phys Status Solidi A 2020;217(12):1900984.

[17]

Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, et al. BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc 2014;97(7):1993-2011.

[18]

Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, et al. High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 2015;27(43):6976-82.

[19]

Lee MH, Kim DJ, Choi HI, Kim M-H, Song TK, Kim W-J, et al. Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics. ACS Appl Electron Mater 2019;1(9):1772-80.

[20]

Habib M, Lee MH, Akram F, Kim M-H, Kim W-J, Song TK. Temperature-insensitive piezoelectric properties of lead-free BiFeO3–BaTiO3 ceramics with high Curie temperature. J Alloys Compd 2020;851:156788.

[21]

Lee MH, Kim DJ, Choi HI, Kim MH, Song TK, Kim WJ, et al. Low sintering temperature for lead-free BiFeO3-BaTiO3 ceramics with high piezoelectric performance. J Am Ceram Soc 2018;102(5):2666-74.

[22]

Wang D, Khesro A, Murakami S, Feteira A, Zhao Q, Reaney IM. Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J Eur Ceram Soc 2017;37(4):1857-60.

[23]

Ma Z, Li G, Sun B, He L, Gao W, Sun Q, et al. Enhanced electric-field-induced strain in 0.7Bi1-xSmxFeO3-0.3BaTiO3 lead-free ceramics. J Mater Sci 2020;55:8134-44.

[24]

Xun B, Song A, Yu J, Yin Y, Li J-F, Zhang B-P. Lead-free BiFeO3-BaTiO3 ceramics with high Curie temperature: fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients. ACS Appl Mater Interfaces 2021;13:4192-202.

[25]

Wang D, Fan Z, Li W, Zhou D, Feteira A, Wang G, et al. High energy storage density and large strain in Bi (Zn2/3Nb1/3)O3-doped BiFeO3–BaTiO3 ceramics. ACS Appl Energy Mater 2018;1(8):4403-12.

[26]

Zheng T, Wu J. Perovskite BiFeO3-BaTiO3 ferroelectrics: engineering properties by domain evolution and thermal depolarization modification. Adv Electron Mater 2020;6(5):2000079.

[27]

Murakami S, Ahmed NTAF, Wang D, Feteira A, Sinclair DC, Reaney IM. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J Eur Ceram Soc 2018;38(12):4220-31.

[28]

Fu D, Ning Z, Hu D, Cheng J, Wang F, Chen J. Large and temperature-insensitive piezoelectric strain in xBiFeO3-(1-x)Ba(Zr0.05Ti0.95)O3 lead-free piezoelectric ceramics. J Mater Sci 2019;54(2):1153-61.

[29]

Habib M, Lee MH, Kim DJ, Choi HI, Kim M-H, Kim W-J, et al. Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3–BaTiO3 ceramics. Ceram Int 2020;46(14):22239-52.

[30]

Malik RA, Hussain A, Song TK, Kim W-J, Ahmed R, Sung YS, et al. Enhanced electromechanical properties of (1-x)BiFeO3-BaTiO3-xLiNbO3 ceramics by quenching process. Ceram Int 2017;5:198-203.

[31]

Murakami S, Wang D, Mostaed A, Khesro A, Feteira A, Sinclair DC, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J Am Ceram Soc 2018;101(12):5428-42.

[32]

Habib M, Ahmad P, Akram F, Kebaili I, Rahman A, Din IU, et al. High and temperature-insensitive piezoelectric performance in the lead-free Sm-doped BiFeO3–BaTiO3 ceramics with high Curie temperature. Ceram Int 2022;48(18):26608-17.

[33]

Habib M, Akram F, Ahmad P, Kebaili I, Rahman A, Din IU, et al. Ultrahigh piezoelectric strain in lead-free BiFeO3-BaTiO3 ceramics at elevated temperature. J Alloys Compd 2022;919:165744.

[34]

Habib M, Lee MH, Kim DJ, Akram F, Choi HI, Kim M-H, et al. Phase diagram for Bi-site La-doped BiFeO3-BaTiO3 lead-free piezoelectric ceramics. J. Materiomics 2020;7(1):40-50.

[35]

Ryu G-H, Hussain A, Lee M-H, Malik RA, Song TK, Kim W-J, et al. Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics. J Eur Ceram Soc 2018;34(13):4414-21.

[36]

Chen J, Daniels JE, Jian J, Cheng Z, Cheng J, Wang J, et al. Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics. Acta Mater 2020;197:1-9.

[37]

Liu X, Zhai J, Shen B. Novel bismuth ferrite-based lead-free incipient piezoceramics with high electromechanical response. J Mater Chem C 2019;7(17):5122-30.

[38]

Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, et al. Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 2013;23(33):4079-86.

[39]

Lv X, Wu J, Xiao D, Zhu J, Zhang J, Zhang X x. Modifying temperature stability of (K,Na)NbO3 ceramics through phase boundary. Adv Electron Mater 2018;4(9):1800205.

[40]

Zhang M-H, Wang K, Zhou J-S, Zhou J-J, Chu X, Lv X, et al. Thermally stable piezoelectric properties of (K,Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater 2017;122:344-51.

[41]

Zhang M-H, Wang K, Du Y-J, Dai G, Sun W, Li G, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J Am Chem Soc 2017;139(10):3889-95.

[42]

Zhou J-S, Wang K, Yao F-Z, Zheng T, Wu J, Xiao D, et al. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J Mater Chem C 2015;3(34):8780-7.

[43]

Chen K, Ma J, Shi C, Wu W, Wu B. Enhanced temperature stability in high piezoelectric performance of (K, Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J Alloys Compd 2021;852:156865.

[44]

Shi C, Ma J, Wu J, Wang X, Miao F, Huang Y, et al. Coexistence of excellent piezoelectric performance and high Curie temperature in KNN-based lead-free piezoelectric ceramics. J Alloys Compd 2020;846:156245.

[45]

Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, et al. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ Sci 2018;11(12):3531-9.

[46]

Chen M, Yao X, Zhang L. Grain size dependence of dielectric and field-induced strain properties of chemical prepared (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric ceramics. Ceram Int 2002;28(2):201-7.

[47]

Pathak A, Prakash C, Chatterjee R. Shape memory effect in PZST system at exact morphotropic phase boundary. Phys B Condens Matter 2009;404(20):3457-61.

[48]

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Nature 2004;432:84-7.

[49]

Habib M, Munir M, Akram F, Lee S, Song T-K, Turak A, et al. Structural evolution and electromechanical properties of SrTiO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics prepared by sol-gel and hydrothermal methods. Mater Chem Phys 2021;266:124529.

[50]

Han H-S, Jo W, Rödel J, Hong I-K, Tai W-P, Lee J-S. Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi1/2(Na0.78K0.22)1/2TiO3 relaxors. J Condens Matter Phys 2012;24(36):365901.

[51]

He X, Wang T, Li X, Das S, Liu X, Chen Z. Enhanced piezoelectricity and excellent thermal stability in Sm3+-doped BiFeO3-PbTiO3 ceramics. ACS Appl Electron Mater 2022;4(2):807-13.

[52]

Yang Z, Wang B, Li Y, Hall DA. Enhancement of nonlinear dielectric properties in BiFeO3–BaTiO3 ceramics by Nb-doping. Materials 2022;15(8):2872.

[53]

Yan Y, Geng LD, Zhu LF, Leng H, Li X, Liu H, et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Adv Sci 2022;9:2105715.

[54]

Yin Y, Tang Y, Pan W, Song A, Yu J, Zhang B. Relaxor behaviors enhance piezoelectricity in lead-free BiFeO3-BaTiO3 ceramics incorporated with a tiny amount of Bi(Mg1/2Ti1/2)O3 near the morphotropic phase boundary. Ceram Int 2021;47(7):9486-94.

[55]

Ahmed T, Khan SA, Kim M, Akram F, Park HW, Hussain A, et al. Effective A-site modulation and crystal phase evolution for high ferro/piezoelectric performance in ABO3 compounds: yttrium-doped BiFeO3-BaTiO3. J Alloys Compd 2023;933:167709.

[56]

Habib M, Iqbal MJ, Lee MH, Akram F, Gul M, Zeb A, et al. Piezoelectric performance of Zr-modified lead-free BiFeO3-BaTiO3 ceramics. Mater Res Bull 2022;146:111571.

[57]

Waqar M, Wu H, Chen J, Yao K, Wang J. Evolution from Lead-based to Lead-free piezoelectrics: engineering of lattices, domains, boundaries, and defects leading to giant response. Adv Mater 2022;34(25):2106845.

[58]

Venkataraman LK, Wang B, Ren P, Hall DA, Rojac T. Quenching effects and mechanisms in bismuth-based perovskite ferroelectrics. Open Ceram 2022;10:100259.

[59]

Tang Y-C, Yin Y, Song A-Z, Liu H, Zhang R, Zhong S-J, et al. Boosting the high performance of BiFeO3-BaTiO3 lead-free piezoelectric ceramics: one-step preparation and reaction mechanisms. ACS Appl Mater Interfaces 2022;14:30991-9.

[60]

Zheng Q, Luo L, Lam KH, Jiang N, Guo Y, Lin D. Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics. J Appl Phys 2014;116(18):184101.

[61]

Wang D, Fan Z, Zhou D, Khesro A, Murakami S, Feteira A, et al. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J Mater Chem 2018;6(9):4133-44.

[62]

Habib M, Lee MH, Kim DJ, Choi HI, Kim M-H, Kim W-J, et al. Enhanced piezoelectric performance of donor La3+-doped BiFeO3-BaTiO3 lead-free piezoceramics. Ceram Int 2020;46(6):7074-80.

[63]

Bhadauria P, Kolte J. Impedance and AC conductivity analysis of La-substituted 0.67BiFeO3–0.33BaTiO3 solid solution. Appl Phys A 2022;128(6):1-11.

[64]

Wang D, Hussain F, Khesro A, Feteira A, Tian Y, Zhao Q, et al. Composition and temperature dependence of structure and piezoelectricity in (1−x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 2017;100(2):627-37.

[65]

Lv X, Zhang J, Liu Y, Li F, Zhang X-x, Wu J. Synergetic contributions in phase boundary engineering to the piezoelectricity of potassium sodium niobate lead-free piezoceramics. ACS Appl Mater Interfaces 2020;12(35):39455-61.

[66]

Wu H, Zhang Y, Wu J, Wang J, Pennycook SJ. Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv Funct Mater 2019;29(33):1902911.

[67]

Wu B, Zhao C, Huang Y, Yin J, Wu W, Wu J. Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics. ACS Appl Mater Interfaces 2020;12(22):25050-7.

[68]

Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H, et al. Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 2020;67:104264.

[69]

Zhou X, Yuan X, Yan Z, Xue G, Luo H, Zhang D. High piezoelectric response and excellent fatigue resistance in Rb-substituted BNT–BKT–BT ceramics. J Mater Sci 2020;55:7634-44.

[70]

Liang JW, Zhu XL, Zhu L, Liu L, Wu SY, Liu XQ, et al. Magnetoelectric coupling in Sm substituted 0.67BiFeO3-0.33BaTiO3 ceramics. J Alloys Compd 2022;901:163681.

Journal of Materiomics
Pages 920-929
Cite this article:
Habib M, Zhou X, Tang L, et al. Phase and domain engineering strategy for enhancement of piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics. Journal of Materiomics, 2023, 9(5): 920-929. https://doi.org/10.1016/j.jmat.2023.02.015
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return