Lead-free BiFeO3-BaTiO3 ceramics attract widespread attention over the last two decades due to their high Curie temperature (TC) and excellent piezoelectric performance. Here, in the Nd-modified 0.67BiFeO3-0.33BaTiO3 ceramics, an excellent piezoelectric constant (d33) of 325 pC/N was achieved by applying a novel poling method (AC-bias + DC-bias) with a high TC of 455 ℃. In addition, an ultrahigh normalized piezoelectric strain (d33* = Smax/Emax) of 808 pm/V was obtained at the normal/typical and relaxor-ferroelectrics phase boundary simultaneously with good thermal stability (Δd33*(T) ≈ 20%) in the temperature range of 25–125 ℃. The piezoelectric force microscopy results show the domain miniaturization from micro to nanoscale/polar nano-regions due to local structure heterogeneity caused by Nd doping. The mechanism for the giant piezoelectric strain is attributed to the thermal quenching, nano-domains, and reverse switching of the short-range order to the long-range order under the applied electric field. The strategic design of domain engineering and a proposed model for the high piezoelectricity is successfully supported by the phenomenological relation and Gibbs free energy profile. In this work, a new lead-free single-element modified BiFeO3-BaTiO3 ceramics was developed by applying a synergistic approach of domain engineering and phase boundary for the high-temperature piezoelectric performance.
Liu Z, Wu H, Yuan Y, Wan H, Luo Z, Gao P, et al. Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications. Curr Opin Solid State Mater Sci 2022;26(5):101016.
Banerjee K, Asthana S. Resolution of ambiguity between the depolarization and ferroelectric–relaxor transition temperature through dielectric studies in lead-free perovskite K0.5Bi0.5TiO3. Mater Chem Phys 2019;231:344-50.
Wang D, Fan Z, Rao G, Wang G, Liu Y, Yuan C, et al. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy 2020;76:104944.
Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater 2018;17(4):349.
Li F, Zhang S, Damjanovic D, Chen LQ, Shrout TR. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv Funct Mater 2018;28(37):1801504.
Chen L, Deng S, Liu H, Wu J, Qi H, Chen J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat Commun 2022;13(1):1-8.
Li Q, Liu Y, Liu J, Song K, Guo H, Li F, et al. Enhanced piezoelectric properties and improved property uniformity in Nd-doped PMN-PT relaxor ferroelectric single crystals. Adv Funct Mater 2022;32(25):2201719.
Lv X, Wu J. Nano-domains in lead-free piezoceramics: a Review. J Mater Chem 2020;8(20):10026-73.
Narayan B, Malhotra JS, Pandey R, Yaddanapudi K, Nukala P, Dkhil B, et al. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat Mater 2018;17(5):427-31.
Lu Y-Q, Li Y-X. A review on lead-free piezoelectric ceramics studies in China. J Adv Dielectr. 2011;1(3):269-88.
Zhou X, Xue G, Luo H, Bowen CR, Zhang D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog Mater Sci 2021;122:100836.
Lv X, Zhu J, Xiao D, Zhang X-x, Wu J. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem Soc Rev 2020;49:671-707.
Wu J, Xiao D, Zhu J. Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115(7):2559-95.
Wang Z, Huangfu G, Xiao H, Guo Y. Excellent thermal stability and enhanced piezoelectric performance of Bi(Ni2/3Nb1/3)O3-modified BiFeO3–BaTiO3 ceramics. J Am Ceram Soc 2022;105(1):317-26.
Calisir I, Amirov AA, Kleppe AK, Hall DA. Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La3+ substitution strategy. J Mater Chem 2018;6(13):5378-97.
Habib M, Lee MH, Kim DJ, Choi HI, Kim M-H, Kim W-J, et al. Ferroelectric and piezoelectric properties of BiFeO3–based piezoelectric ceramics. Phys Status Solidi A 2020;217(12):1900984.
Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, et al. BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc 2014;97(7):1993-2011.
Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, et al. High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 2015;27(43):6976-82.
Lee MH, Kim DJ, Choi HI, Kim M-H, Song TK, Kim W-J, et al. Thermal quenching effects on the ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics. ACS Appl Electron Mater 2019;1(9):1772-80.
Habib M, Lee MH, Akram F, Kim M-H, Kim W-J, Song TK. Temperature-insensitive piezoelectric properties of lead-free BiFeO3–BaTiO3 ceramics with high Curie temperature. J Alloys Compd 2020;851:156788.
Lee MH, Kim DJ, Choi HI, Kim MH, Song TK, Kim WJ, et al. Low sintering temperature for lead-free BiFeO3-BaTiO3 ceramics with high piezoelectric performance. J Am Ceram Soc 2018;102(5):2666-74.
Wang D, Khesro A, Murakami S, Feteira A, Zhao Q, Reaney IM. Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J Eur Ceram Soc 2017;37(4):1857-60.
Ma Z, Li G, Sun B, He L, Gao W, Sun Q, et al. Enhanced electric-field-induced strain in 0.7Bi1-xSmxFeO3-0.3BaTiO3 lead-free ceramics. J Mater Sci 2020;55:8134-44.
Xun B, Song A, Yu J, Yin Y, Li J-F, Zhang B-P. Lead-free BiFeO3-BaTiO3 ceramics with high Curie temperature: fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients. ACS Appl Mater Interfaces 2021;13:4192-202.
Wang D, Fan Z, Li W, Zhou D, Feteira A, Wang G, et al. High energy storage density and large strain in Bi (Zn2/3Nb1/3)O3-doped BiFeO3–BaTiO3 ceramics. ACS Appl Energy Mater 2018;1(8):4403-12.
Zheng T, Wu J. Perovskite BiFeO3-BaTiO3 ferroelectrics: engineering properties by domain evolution and thermal depolarization modification. Adv Electron Mater 2020;6(5):2000079.
Murakami S, Ahmed NTAF, Wang D, Feteira A, Sinclair DC, Reaney IM. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J Eur Ceram Soc 2018;38(12):4220-31.
Fu D, Ning Z, Hu D, Cheng J, Wang F, Chen J. Large and temperature-insensitive piezoelectric strain in xBiFeO3-(1-x)Ba(Zr0.05Ti0.95)O3 lead-free piezoelectric ceramics. J Mater Sci 2019;54(2):1153-61.
Habib M, Lee MH, Kim DJ, Choi HI, Kim M-H, Kim W-J, et al. Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3–BaTiO3 ceramics. Ceram Int 2020;46(14):22239-52.
Malik RA, Hussain A, Song TK, Kim W-J, Ahmed R, Sung YS, et al. Enhanced electromechanical properties of (1-x)BiFeO3-BaTiO3-xLiNbO3 ceramics by quenching process. Ceram Int 2017;5:198-203.
Murakami S, Wang D, Mostaed A, Khesro A, Feteira A, Sinclair DC, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J Am Ceram Soc 2018;101(12):5428-42.
Habib M, Ahmad P, Akram F, Kebaili I, Rahman A, Din IU, et al. High and temperature-insensitive piezoelectric performance in the lead-free Sm-doped BiFeO3–BaTiO3 ceramics with high Curie temperature. Ceram Int 2022;48(18):26608-17.
Habib M, Akram F, Ahmad P, Kebaili I, Rahman A, Din IU, et al. Ultrahigh piezoelectric strain in lead-free BiFeO3-BaTiO3 ceramics at elevated temperature. J Alloys Compd 2022;919:165744.
Habib M, Lee MH, Kim DJ, Akram F, Choi HI, Kim M-H, et al. Phase diagram for Bi-site La-doped BiFeO3-BaTiO3 lead-free piezoelectric ceramics. J. Materiomics 2020;7(1):40-50.
Ryu G-H, Hussain A, Lee M-H, Malik RA, Song TK, Kim W-J, et al. Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics. J Eur Ceram Soc 2018;34(13):4414-21.
Chen J, Daniels JE, Jian J, Cheng Z, Cheng J, Wang J, et al. Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics. Acta Mater 2020;197:1-9.
Liu X, Zhai J, Shen B. Novel bismuth ferrite-based lead-free incipient piezoceramics with high electromechanical response. J Mater Chem C 2019;7(17):5122-30.
Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, et al. Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 2013;23(33):4079-86.
Lv X, Wu J, Xiao D, Zhu J, Zhang J, Zhang X x. Modifying temperature stability of (K,Na)NbO3 ceramics through phase boundary. Adv Electron Mater 2018;4(9):1800205.
Zhang M-H, Wang K, Zhou J-S, Zhou J-J, Chu X, Lv X, et al. Thermally stable piezoelectric properties of (K,Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater 2017;122:344-51.
Zhang M-H, Wang K, Du Y-J, Dai G, Sun W, Li G, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J Am Chem Soc 2017;139(10):3889-95.
Zhou J-S, Wang K, Yao F-Z, Zheng T, Wu J, Xiao D, et al. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J Mater Chem C 2015;3(34):8780-7.
Chen K, Ma J, Shi C, Wu W, Wu B. Enhanced temperature stability in high piezoelectric performance of (K, Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J Alloys Compd 2021;852:156865.
Shi C, Ma J, Wu J, Wang X, Miao F, Huang Y, et al. Coexistence of excellent piezoelectric performance and high Curie temperature in KNN-based lead-free piezoelectric ceramics. J Alloys Compd 2020;846:156245.
Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, et al. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ Sci 2018;11(12):3531-9.
Chen M, Yao X, Zhang L. Grain size dependence of dielectric and field-induced strain properties of chemical prepared (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric ceramics. Ceram Int 2002;28(2):201-7.
Pathak A, Prakash C, Chatterjee R. Shape memory effect in PZST system at exact morphotropic phase boundary. Phys B Condens Matter 2009;404(20):3457-61.
Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Nature 2004;432:84-7.
Habib M, Munir M, Akram F, Lee S, Song T-K, Turak A, et al. Structural evolution and electromechanical properties of SrTiO3-modified Bi0.5Na0.5TiO3–BaTiO3 ceramics prepared by sol-gel and hydrothermal methods. Mater Chem Phys 2021;266:124529.
Han H-S, Jo W, Rödel J, Hong I-K, Tai W-P, Lee J-S. Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi1/2(Na0.78K0.22)1/2TiO3 relaxors. J Condens Matter Phys 2012;24(36):365901.
He X, Wang T, Li X, Das S, Liu X, Chen Z. Enhanced piezoelectricity and excellent thermal stability in Sm3+-doped BiFeO3-PbTiO3 ceramics. ACS Appl Electron Mater 2022;4(2):807-13.
Yang Z, Wang B, Li Y, Hall DA. Enhancement of nonlinear dielectric properties in BiFeO3–BaTiO3 ceramics by Nb-doping. Materials 2022;15(8):2872.
Yan Y, Geng LD, Zhu LF, Leng H, Li X, Liu H, et al. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Adv Sci 2022;9:2105715.
Yin Y, Tang Y, Pan W, Song A, Yu J, Zhang B. Relaxor behaviors enhance piezoelectricity in lead-free BiFeO3-BaTiO3 ceramics incorporated with a tiny amount of Bi(Mg1/2Ti1/2)O3 near the morphotropic phase boundary. Ceram Int 2021;47(7):9486-94.
Ahmed T, Khan SA, Kim M, Akram F, Park HW, Hussain A, et al. Effective A-site modulation and crystal phase evolution for high ferro/piezoelectric performance in ABO3 compounds: yttrium-doped BiFeO3-BaTiO3. J Alloys Compd 2023;933:167709.
Habib M, Iqbal MJ, Lee MH, Akram F, Gul M, Zeb A, et al. Piezoelectric performance of Zr-modified lead-free BiFeO3-BaTiO3 ceramics. Mater Res Bull 2022;146:111571.
Waqar M, Wu H, Chen J, Yao K, Wang J. Evolution from Lead-based to Lead-free piezoelectrics: engineering of lattices, domains, boundaries, and defects leading to giant response. Adv Mater 2022;34(25):2106845.
Venkataraman LK, Wang B, Ren P, Hall DA, Rojac T. Quenching effects and mechanisms in bismuth-based perovskite ferroelectrics. Open Ceram 2022;10:100259.
Tang Y-C, Yin Y, Song A-Z, Liu H, Zhang R, Zhong S-J, et al. Boosting the high performance of BiFeO3-BaTiO3 lead-free piezoelectric ceramics: one-step preparation and reaction mechanisms. ACS Appl Mater Interfaces 2022;14:30991-9.
Zheng Q, Luo L, Lam KH, Jiang N, Guo Y, Lin D. Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics. J Appl Phys 2014;116(18):184101.
Wang D, Fan Z, Zhou D, Khesro A, Murakami S, Feteira A, et al. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J Mater Chem 2018;6(9):4133-44.
Habib M, Lee MH, Kim DJ, Choi HI, Kim M-H, Kim W-J, et al. Enhanced piezoelectric performance of donor La3+-doped BiFeO3-BaTiO3 lead-free piezoceramics. Ceram Int 2020;46(6):7074-80.
Bhadauria P, Kolte J. Impedance and AC conductivity analysis of La-substituted 0.67BiFeO3–0.33BaTiO3 solid solution. Appl Phys A 2022;128(6):1-11.
Wang D, Hussain F, Khesro A, Feteira A, Tian Y, Zhao Q, et al. Composition and temperature dependence of structure and piezoelectricity in (1−x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 2017;100(2):627-37.
Lv X, Zhang J, Liu Y, Li F, Zhang X-x, Wu J. Synergetic contributions in phase boundary engineering to the piezoelectricity of potassium sodium niobate lead-free piezoceramics. ACS Appl Mater Interfaces 2020;12(35):39455-61.
Wu H, Zhang Y, Wu J, Wang J, Pennycook SJ. Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv Funct Mater 2019;29(33):1902911.
Wu B, Zhao C, Huang Y, Yin J, Wu W, Wu J. Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics. ACS Appl Mater Interfaces 2020;12(22):25050-7.
Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H, et al. Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 2020;67:104264.
Zhou X, Yuan X, Yan Z, Xue G, Luo H, Zhang D. High piezoelectric response and excellent fatigue resistance in Rb-substituted BNT–BKT–BT ceramics. J Mater Sci 2020;55:7634-44.
Liang JW, Zhu XL, Zhu L, Liu L, Wu SY, Liu XQ, et al. Magnetoelectric coupling in Sm substituted 0.67BiFeO3-0.33BaTiO3 ceramics. J Alloys Compd 2022;901:163681.