AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Large electrical strain in lead-free K0.5Na0.5NbO3-based ceramics by heterovalent doping

Xiangjian Wanga,b,e,( )Jun WangaWenping GengcGuohua DongdBrahim DkhilfXiaojie Loub,( )
Department of Information Engineering, Quzhou College of Technology, Quzhou, 324000, China
Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051, China
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
Applied Physics, Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden
Laboratoire Structures, Propriétés et Modélisation des Solides, Université Paris Saclay, CentraleSupélec, CNRS-UMR8580, Grande Voie des Vignes, Châtenay Malabry, Cedex, 92295, France

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Heterovalent doped (K0.48-0.07xNa0.52-0.43xBi0.5x)(Nb0.95-0.95xSb0.05-0.05xZrx)O3 ceramics were fabricated using conventional solid-state reaction. Then, the phase structures, dielectric, ferroelectric, and electric-strain properties were investigated. The compositions were tuned to be located at polymorphic phase boundary with increasing heterovalent Bi3+ and Zr4+ doping levels. A large strain of 0.19% was obtained at relatively low electric fields of 30 kV/cm in the composition of x = 0.04. The normalized large-signal d33* values were approximately 633 pm/V under a low driving electric field of 30 kV/cm, which were comparable or larger than the values reported for other lead-free families. The large strains obtained can be attributed to the formation of nanodomains and high-density domain walls, which were confirmed by the observations of domain morphology using transmission electron microscopy (TEM) technique. Excellent temperature stability of the strain properties of the x = 0.04 sample could be ascribed to the sluggish behaviour for the local structural heterogeneity in heterovalent-ion doped KNN ceramic. Theoretical simulations revealed that the Zr4+ produce the local stress at the BO6 octahedra and Bi3+ could yield off-centering of AO12 ployhedron due to the nature of Bi 6s lone pair electrons, which induced lattice expansion and local distortions in the sample. The local displacements are strongly anisotropic in heterovalent-ion doped system. It is believed that random local fields exist in these compositions owing to the eixstence of charge distribution. Such heterovalent doping of Bi3+ and Zr4+ could destory simultaneously the orthorhombic symmetry and the short-range ferroelecctric order, leading to the formation of complex nanodomains and local structral hetergenenity. Heterovalent doping may, therefore, offer a new avenve to design novel K0.5Na0.5NbO3 (KNN) -based materials for their mutifunctional applications.

References

[1]

Wu J, Xiao D, Zhu J. Potassium–Sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115(7):2559-95.

[2]

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Nature 2004;432(7013):84-7.

[3]

Wang X, Lou X, Geng W, Yao Y, Tao T, Liang B, Lu S-G. Multifunctionality in (K,Na)NbO3-based ceramic near polymorphic phase boundary. J Appl Phys 2021;130(6):064102.

[4]

Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, et al. Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv Mater 2018;30(8):1705171.

[5]

Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, Zhu J. Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv Mater 2016;28(38):8591.

[6]

Zhang M-H, Zhang Q, Yu T-T, Li G, Thong H-C, Peng L-Y, et al. Enhanced electric-field-induced strains in (K,Na)NbO3 piezoelectrics from heterogeneous structures, Mater. Today Off 2021;46:44-53.

[7]

Rubio-Marcos F, López-Juárez R, Rojas-Hernandez RE, del Campo A, Razo-Pérez N, Fernandez JF. Lead-free piezoceramics: revealing the role of the rhombohedral–tetragonal phase coexistence in enhancement of the piezoelectric properties. ACS Appl Mater & Interfaces 2015;7(41):23080-8.

[8]

Liu W, Wang H, Hu W, Du Y, Cheng C. Understanding the origin of the high piezoelectric performance of KNN-based ceramics from the perspective of lattice distortion. Ceram Int 2022;48(7):9731-8.

[9]

Huangfu G, Zeng K, Wang B, Wang J, Fu Z, Xu F, et al. Giant electric field-induced strain in lead-free piezoceramics. Science 2022;378(6624):1125-30.

[10]

Kong J, Li L, Liu J, Marlton FP, Jørgensen MRV, Pramanick A. A local atomic mechanism for monoclinic-tetragonal phase boundary creation in Li-doped Na0.5K0.5NbO3 ferroelectric solid solution. Inorg Chem 2022;61(10):4335-49.

[11]

Wu H, Zhang Y, Wu J, Wang J, Pennycook SJ. Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv Funct Mater 2019;29(33):1902911.

[12]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32(5).

[13]

Khansur NH, Martin A, Riess K, Nishiyama H, Hatano K, Wang K, et al. Stress-modulated optimization of polymorphic phase transition in Li-doped (K,Na)NbO3. Appl Phys Lett 2020;117(3):032901.

[14]

Phelan D, Stock C, Rodriguez-Rivera JA, Chi S, Leão J, Long X, et al. Role of random electric fields in relaxors. Proc Natl Acad Sci USA 2014;111(5):1754-9.

[15]

Chen L, Liu H, Qi H, Chen J. High-electromechanical performance for high-power piezoelectric applications: fundamental, progress, and perspective. Prog Mater Sci 2022;127:100944.

[16]

Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, et al. Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J Am Chem Soc 2014;136(7):2905-10.

[17]

Lin D, Kwok KW, Chan HLW. Phase structures and electrical properties of K0.5Na0.5(Nb0.925Ta0.075)O3–LiSbO3 lead-free piezoelectric ceramics. J Phys D Appl Phys 2007;40(19):6060-5.

[18]

Zuo R, Fu J. Rhombohedral–tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 lead-free ceramics. J Am Ceram Soc 2011;94(5):1467-70.

[19]

Zhou C, Zhang J, Yao W, Wang X, Liu D, Sun X. Piezoelectric performance, phase transitions, and domain structure of 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O3−0.04(Bi0.50Na0.50)ZrO3 ceramics. J Appl Phys 2018;124(16):164101.

[20]

Gao X, Cheng Z, Chen Z, Liu Y, Meng X, Zhang X, et al. The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics. Nat Commun 2021;12(1):881.

[21]

Zheng T, Yu Y, Lei H, Li F, Zhang S, Zhu J, et al. Compositionally graded KNN-based multilayer composite with excellent piezoelectric temperature stability. Adv Mater 2022;34(8):2109175.

[22]

Wang X, Wu J, Dkhil B, Xu B, Wang X, Dong G, et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl Phys Lett 2017;110(6):063904.

[23]

Zhang M-H, Shen C, Zhao C, Dai M, Yao F-Z, Wu B, et al. Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics. Nat Commun 2022;13(1):3434.

[24]

Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J Am Ceram Soc 2019;141(35):13987-94.

[25]

Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, et al. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ Sci 2018;11(12):3531-9.

[26]

Damjanovic D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Chem Soc 2005;88(10):2663-76.

[27]

Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout TR. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Adv Funct Mater 2018;28(37):1801504.

[28]

Thong HC, Li Z, Lu JT, Li CBW, Liu YX, Sun Q, et al. Domain engineering in bulk ferroelectric ceramics via mesoscopic chemical inhomogeneity. Adv Sci 2022:2200998.

[29]

Goodwin AL. Opportunities and challenges in understanding complex functional materials. Nat Commun 2019;10(1):4461.

[30]

Ziatdinov M, Nelson C, Vasudevan RK, Chen DY, Kalinin SV. Building ferroelectric from the bottom up: the machine learning analysis of the atomic-scale ferroelectric distortions. Appl Phys Lett 2019;115(5):052902.

[31]

Petkov V, Kim J-W, Shastri S, Gupta S, Priya S. Geometrical frustration and piezoelectric response in oxide ferroics. Phys. Rev. Mater. 2020;4(1):014405.

[32]

Bilc DI, Singh DJ. Frustration of tilts and A-site driven ferroelectricity in KNbO3-LiNbO3 alloys. Phys Rev Lett 2006;96(14):147602.

[33]

Jiang B, Bridges CA, Unocic RR, Pitike KC, Cooper VR, Zhang Y, et al. Probing the local site disorder and distortion in pyrochlore high-entropy oxides. J Am Ceram Soc 2021;143(11):4193-204.

[34]

Meyer K-C, Koch L, Albe K. Phase transformations in the relaxor Na1/2Bi1/2TiO3 studied by means of density functional theory calculations. J Am Ceram Soc 2018;101(1):472-82.

[35]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54(16):11169-86.

[36]

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47(1):558-61.

[37]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77(18):3865-8.

[38]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13(12):5188-92.

[39]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44(6):1272-6.

[40]

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simulat Mater Sci Eng 2009;18(1):015012.

[41]

Qin Y, Zhang J, Tan Y, Yao W, Wang C, Zhang S. Domain configuration and piezoelectric properties of (K0.50Na0.50)1-xLix(Nb0.80Ta0.20)O3 ceramics. J Eur Ceram Soc 2014;34(16):4177-84.

[42]

Zuo R, Fu J, Lv D, Liu Y. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J. Amer.Ceram. Soc. 2010;93(9):2783-7.

[43]

Wang X, Wu J, Dkhil B, Xu B, Wang X, Dong G, et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl Phys Lett 2017;110(6):063904.

[44]

Tangsritrakul J, Poolphol P, Vittayakorn W. Effect of thermal profile on a shift in phase transition temperature of Sb-doped KNN piezoceramic. Ferroelectrics 2021;572(1):27-35.

[45]

Zhang B, Wu J, Cheng X, Wang X, Xiao D, Zhu J, et al. Lead-free piezoelectrics based on potassium–sodium niobate with giant d33. ACS Appl Mater Interfaces 2013;5(16):7718-25.

[46]

Yang Y, Ji Y, Fang M, Zhou Z, Zhang L, Ren X. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivity. Phys Rev Lett 2019;123(13):137601.

[47]

Klein N, Hollenstein E, Damjanovic D, Trodahl HJ, Setter N, Kuball M. A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. J Appl Phys 2007;102(1):014112.

[48]

Tao H, Wu J. Giant piezoelectric effect and high strain response in (1−x)(K0.45Na0.55)(Nb1-ySby)O3-xBi0.5Na0.5Zr1-zHfzO3 lead-free ceramics. J Eur Ceram Soc 2016;36(7):1605-12.

[49]

Liu Y, Liu H, Sun S, Wang L, Chen J. Direct observation of electric field-induced tetragonal-orthorhombic phase transition in KNN-based piezoelectric ceramics via in-situ synchrotron diffraction. Scripta Mater 2022;207:114283.

[50]

Trolier-McKinstry S, Gharb NB, Damjanovic D. Piezoelectric nonlinearity due to motion of 180° domain walls in ferroelectric materials at subcoercive fields: a dynamic poling model. Appl Phys Lett 2006;88(20):202901.

[51]

Zhao C, Zhang M-H, Rödel J, Koruza J. Extrinsic and intrinsic contributions to the electrostrain in precipitation-hardened barium calcium titanate. Appl Phys Lett 2022;121(16):162904.

[52]

Fan P, Liu K, Ma W, Tan H, Zhang Q, Zhang L, et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J Mater 2021;7(3):508-44.

[53]

Zheng T, Wu H, Yuan Y, Lv X, Li Q, Men T, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 2017;10(2):528-37.

[54]

Singh A, Chatterjee R. 0.40% bipolar strain in lead free BNT–KNN system modified with Li, Ta and Sb. J. Amer.Ceram. Soc. 2013;96(2):509-12.

[55]

Shi P, Li T, Zhu X, Liu W, Liu Q, Yang B, et al. High strain in Bi0.5Na0.5TiO3-based relaxors by adding two modifiers featuring with morphotropic phase boundary. Scripta Mater 2022;218:114674.

[56]

Luo H, Liu H, Huang H, Song Y, Tucker MG, Sun Z, et al. Achieving giant electrostrain of above 1% in (Bi,Na)TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition, Science. Advantage 2023;9(5):eade7078.

[57]

Fu J, Zuo R, Qi H, Zhang C, Li J, Li L. Low electric-field driven ultrahigh electrostrains in Sb-substituted (Na,K)NbO3 lead-free ferroelectric ceramics. Appl Phys Lett 2014;105(24):242903.

[58]

Ochoa DA, Esteves G, Iamsasri T, Rubio-Marcos F, Fernández JF, García JE, et al. Extensive domain wall contribution to strain in a (K,Na)NbO3-based lead-free piezoceramics quantified from high energy X-ray diffraction. J Eur Ceram Soc 2016;36(10):2489-94.

[59]

Liu Y-X, Thong H-C, Cheng Y-Y-S, Li J-W, Wang K. Defect-mediated domain-wall motion and enhanced electric-field-induced strain in hot-pressed K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J Appl Phys 2021;129(2):024102.

[60]

Qin Y, Zhang J, Yao W, Lu C, Zhang S. Domain configuration and thermal stability of (K0. 48Na0.52)(Nb0.96Sb0.04)O3–Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appli. Materi.&Interfaces 2016;8(11):7257-65.

[61]

Thong H-C, Payne A, Li J-W, Jones JL, Wang K. The origin of chemical inhomogeneity in lead-free potassium sodium niobate ceramic: competitive chemical reaction during solid-state synthesis. Acta Mater 2021;211:116833.

[62]

Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv Mater 2018;30(8):1705171.

[63]

Wang K, Yao FZ, Jo W, Gobeljic D, Shvartsman VV, Lupascu DC, et al. Temperature-insensitive (K, Na) NbO3-based lead-free piezoactuator ceramics. Adv. Funct.l Mater. 2013;23(33):4079-86.

[64]

Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K-Y, et al. Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. Natl Sci Rev 2020;7(2).

[65]

Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, et al. High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ Sci 2018;11(12):3531-9.

[66]

Yan X, Zheng M, Gao X, Zhu M, Hou Y. Giant current performance in lead-free piezoelectrics stem from local structural heterogeneity. Acta Mater 2020;187:29-40.

[67]

Roncal-Herrero T, Harrington J, Zeb A, Milne SJ, Brown AP. Nanoscale compositional segregation and suppression of polar coupling in a relaxor ferroelectric. Acta Mater 2018;158:422-9.

[68]

Cheng X, Wu J, Wang X, Zhang B, Zhu J, Xiao D, et al. Giant d33 in (K,Na)(Nb,Sb)O3-(Bi,Na,K, Li)ZrO3 based lead-free piezoelectrics with high Tc. Appl Phys Lett 2013;103(5):052906.

[69]

Zuo R, Fu J, Lv D, Liu Y. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. Acta Mater 2010;93(9):2783-7.

[70]

Cross LE. Relaxor ferroelectrics, Ferroelectrics 1987;76(1):241-67.

[71]

Eremenko M, Krayzman V, Bosak A, Playford HY, Chapman KW, Woicik JC, et al. Local atomic order and hierarchical polar nanoregions in a classical relaxor ferroelectric. Nat Commun 2019;10(1):2728.

[72]

Pramanick A, Dmowski W, Egami T, Budisuharto AS, Weyland F, Novak N, et al. Stabilization of polar nanoregions in Pb-free ferroelectrics. Phys Rev Lett 2018;120(20):207603.

[73]

Kunti AK, Patra N, Harris RA, Sharma SK, Bhattacharyya D, Jha SN, et al. Local structure and spectroscopic properties of Eu3+-doped BaZrO3. Inorg Chem 2019;58(5):3073-89.

[74]

Andrault D, Poirier J. Evolution of the distortion of perovskites under pressure: an EXAFS study of BaZrO3, SrZrO3 and CaGeO3. Phys.Chemi. Miner. 1991;18(2):91-105.

[75]

Schader FH, Aulbach E, Webber KG, . Influence of uniaxial stress on the ferroelectric-to-paraelectric phase change in barium titanate. J Appl Phys 2013;113(17):174103.

[76]

Riemer LM, Lalitha KV, Jiang X, Liu N, Dietz C, Stark RW, et al. Stress-induced phase transition in lead-free relaxor ferroelectric composites. Acta Mater 2017;136:271-80.

[77]

Schader FH, Khakpash N, RossettiJr GA, Webber KG. Phase transitions in BaTiO3 under uniaxial compressive stress: experiments and phenomenological analysis. J Appl Phys 2017;121(6):064109.

[78]

Kong J, Liu J, Marlton F, Jørgensen MRV, Pramanick A. Local structural mechanism for phase transition and ferroelectric polarization in the mixed oxide K0.5Na0.5NbO3. Phys Rev B 2021;103(18):184104.

[79]

Bah M, Podor R, Retoux R, Delorme F, Nadaud K, Giovannelli F, et al. Real-time capturing of microscale events controlling the sintering of lead-free piezoelectric potassium-sodium niobate. Nano·Micro Small 2022;18(18):2106825.

[80]

Veselinović L, Mitrić M, Avdeev M, Marković S, Uskoković D. New insights into BaTi1-xSnxO3 (0≤x≤0.20) phase diagram from neutron diffraction data. J Appl Crystallogr 2016;49(5):1726-33.

[81]

Grinberg I, Suchomel MR, Dmowski W, Mason SE, Wu H, Davies PK, et al. Structure and polarization in the high Tc ferroelectric BiZnTiO3-PbTiO3 solid solutions. Phys Rev Lett 2007;98(10):107601.

[82]

Thong H-C, Zhao C, Zhou Z, Wu C-F, Liu Y-X, Du Z-Z, et al. Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater Today 2019;29:37-48.

[83]
Reston, VA: Mineral Commodity Summaries; 2022. p. 202.
[84]

Löfgren R, Pawar R, Öberg S, Larsson JA. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond. New J Phys 2018;20(2):023002.

[85]

Ma P-W, Mason DR, Dudarev SL. Multiscale analysis of dislocation loops and voids in tungsten. Phys. Rev. Mater. 2020;4(10):103609.

[86]

Thong H-C, Wang X, Han J, Zhang L, Li B, Wang K, et al. Machine learning interatomic potential for molecular dynamics simulation of the ferroelectric KNbO3 perovskite. Phys Rev B 2023;107(1):014101.

[87]

Chen L, Deng S, Liu H, Wu J, Qi H, Chen J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat Commun 2022;13(1):3089.

Journal of Materiomics
Pages 959-970
Cite this article:
Wang X, Wang J, Geng W, et al. Large electrical strain in lead-free K0.5Na0.5NbO3-based ceramics by heterovalent doping. Journal of Materiomics, 2023, 9(5): 959-970. https://doi.org/10.1016/j.jmat.2023.03.001

145

Views

5

Crossref

3

Web of Science

3

Scopus

Altmetrics

Received: 05 January 2023
Revised: 23 February 2023
Accepted: 07 March 2023
Published: 01 April 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return