AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhanced piezoelectricity in 0.7BiFeO3-0.3BaTiO3 lead-free ceramics: Distinct effect of poling engineering

Aizhen SongaYu-Cheng TangaHezhang Lib,( )Ning WangaLei ZhaocJun Peia,( )Bo-Ping Zhanga,( )
The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
Department of Precision Instrument, Tsinghua University, Beijing, 10084, China
Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding, 071002, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

BiFeO3-BaTiO3 based ceramics are considered to be the most promising lead-free piezoelectric ceramics due to their large piezoelectric response and high Curie temperature. Since the piezoelectric response of piezoelectric ceramics just appears after poling engineering, in this work, the domain evolution and microscopic piezoresponse were observed in-situ using piezoresponse force microscopy (PFM) and switching spectroscopy piezoresponse force microscopy (SS-PFM), which can effectively study the local switching characteristics of ferroelectric materials especially at the nanoscale. The new domain nucleation preferentially forms at the boundary of the relative polarization region and expands laterally with the increase of bias voltage and temperature. The maximum piezoresponse (Rs), remnant piezoresponse (Rrem), maximum displacement (Dmax) and negative displacement (Dneg) at 45 V and 120 ℃ reach 122, 69, 127 pm and 75 pm, respectively. Due to the distinct effect of poling engineering in full domain switching, the corresponding d33 at 50 kV/cm and 120 ℃ reaches a maximum of 205 pC/N, which is nearly twice as high as that at room temperature. Studying the evolution of ferroelectric domains in the poling engineering of BiFeO3-BaTiO3 ceramics provides an insight into the relationship between domain structure and piezoelectric response, which has implications for other piezoelectric ceramics as well.

References

[1]

Zheng Q, Luo L, Lam KH, Jiang N, Guo Y, Lin D. Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics. J Appl Phys 2014;116:184101. https://doi.org/10.1063/1.4901198.

[2]

Huang SG, Li QN, Yang L, Xu JW, Zhou CR, Chen GH, et al. Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics. Ceram Int 2018;44:8955-62. https://doi.org/10.1016/j.ceramint.2018.02.095.

[3]

Zhu LF, Zhang BP, Li S, Zhao L, Wang N, Shi XC. Enhanced piezoelectric properties of Bi(Mg1/2Ti1/2)O3 modified BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary. J Alloys Compd 2016;664:604-8. https://doi.org/10.1016/j.jallcom.2016.01.003.

[4]

Wu JG, Fan Z, Xiao DQ, Zhu JG, Wang J. Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 2016;84:335-402. https://doi.org/10.1016/j.pmatsci.2016.09.001.

[5]

Zheng T, Wu JG. Mesoscale origin of dielectric relaxation with superior electrostrictive strain in bismuth ferrite-based ceramics. Mater Horiz 2020;7:3011-20. https://doi.org/10.1039/D0MH01296C.

[6]

Wu JG. Perovskite lead-free piezoelectric ceramics. J Appl Phys 2020;127:190901. https://doi.org/10.1063/5.0006261.

[7]

Li B, Zheng T, Wu JG. Decoding thermal depolarization temperature in bismuth ferrite-barium titanate relaxor ferroelectrics with large strain response. ACS Appl Mater Interfaces 2021;13:37422-32. https://doi.org/10.1021/acsami.1c10468.

[8]

Wang YP, Zhou L, Zhang MF, Chen XY, Liu JM, Liu ZG. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett 2004;84:1731-3. https://doi.org/10.1063/1.1667612.

[9]

Tang YC, Yin Y, Song AZ, Liu H, Zhang R, Zhong S, et al. Boosting the high performance of BiFeO3-BaTiO3 lead-free piezoelectric ceramics: one-step preparation and reaction mechanisms. ACS Appl Mater Interfaces 2022;14:30991-9. https://doi.org/10.1021/acsami.2c06164.

[10]

Xun BW, Wang N, Zhang BP, Chen XY, Zheng YQ, Jin WS, et al. Enhanced piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 lead-free piezoceramics with high Curie temperature by optimizing Bi self-compensation. Ceram Int 2019;45:24382-91. https://doi.org/10.1016/j.ceramint.2019.08.157.

[11]

Yi WB, Lu ZY, Liu XY, Huang D, Jia Z, Chen ZW, et al. Excellent piezoelectric performance of Bi-compensated 0.69BiFeO3-0.31BaTiO3 lead-free piezoceramics. J Mater Sci Mater Electron 2021;32:22637-44. https://doi.org/10.1007/s10854-021-06748-y.

[12]

Guan SB, Yang HB, Zhao YZ, Zhang R. Effect of Li2CO3 addition in BiFeO3-BaTiO3 ceramics on the sintering temperature, electrical properties and phase transition. J Alloys Compd 2018;735:386-93. https://doi.org/10.1016/j.jallcom.2017.11.156.

[13]

Yang HB, Zhou CR, Liu XY. Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics. J Eur Ceram Soc 2013;33:1177-83. https://doi.org/10.1016/j.jeurceramsoc.2012.11.019.

[14]

Zhou CR, Yang HB, Zhou Q, Cen ZY, Li WZ, Yuan CL, et al. Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3-BaTiO3 ceramics. Ceram Int 2013;39:4307-11. https://doi.org/10.1016/j.ceramint.2012.11.012.

[15]

Wu X, Tian M, Guo Y, Zheng Q, Luo L, Lin D. Phase transition, dielectric, ferroelectric and ferromagnetic properties of La-doped BiFeO3-BaTiO3 multiferroic ceramics. J Mater Sci Mater Electron 2015;26:978-84. https://doi.org/10.1007/s10854-014-2492-z.

[16]

Zheng QJ, Luo LL, Lam KH, Jiang N, Guo YQ, Lin DM. Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics. J Appl Phys 2014;116:184101. https://doi.org/10.1063/1.4901198.

[17]

Tian MJ, Zhou L, Zou X, Zheng QJ, Luo LL, Jiang N, et al. Improved ferroelectricity and ferromagnetism of Eu-modified BiFeO3-BaTiO3 lead-free multiferroic ceramics. J Mater Sci Mater Electron 2015;26:8840-7. https://doi.org/10.1007/s10854-015-3564-4.

[18]

Zhou W, Zheng Q, Li Y, Li Q, Wan Y, Wu M, et al. Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al-modified BiFeO3-BaTiO3 multiferroic ceramics. Phys Status Solidi A 2015;212:632-9. https://doi.org/10.1002/pssa.201431485.

[19]

Neaten JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 2005;71:14111-3. https://doi.org/10.1103/Phys.Rev.B.71.014113.

[20]

Wan Y, Li Y, Li Q, Zhou W, Zheng QJ, Wu XC, et al. Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3-BaTiO3 multiferroic ceramics with MnO2 addition. J Am Ceram Soc 2014;97:1809-18. https://doi.org/10.1111/jace.12827.

[21]

Zheng T, Wu JG. Quenched bismuch ferrite-bariumtitanate lead -free piezoelectric ceramics. J Alloys Compd 2016;676:505-12. https://doi.org/10.1016/j.jallcom.2016.03.205.

[22]

Cheng S, Zhang BP, Zhao L, Wang KK. Enhanced insulating and piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: analysis of Bi3+ volatilization and phase structures. J Mater Chem C 2018;6:3982-9. https://doi.org/10.1039/c8tc00329g.

[23]

Kim S, Khanal GP, Nam H, Fujll I, Ueno S, Wada S. Effects of AC- and DC-bias field poling on piezoelectric properties of Bi-based ceramics. J Ceram Soc Jpn 2019;127:353-6.

[24]

Guo J, Tong B, Chen Y, Chen J, Cheng J. Domain evolution during electric poling and thermal depoling processes in lead-free 0.75BiFeO3-0.25BaTiO3 ceramics. Ceram Int 2020;46:22397-403. https://doi.org/10.1016/j.ceramint.2020.05.322.

[25]

Jesse S, Baddorf A, Kalinin S. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl Phys Lett 2006;88:062908. https://doi.org/10.1063/1.2172216.

[26]

Gruverman A, Rodriguez BJ, Dehoff C, Waldrep JD, Kingon AI, Nemanich RJ. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl Phys Lett 2005;87:082902. https://doi.org/10.1063/1.2010605.

[27]

Gruverman A, Rodriguez BJ, Kingon AI, Nemanich RJ, Cross JS, Tsukada M. Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors. Appl Phys Lett 2003;82:3071. https://doi.org/10.1063/1.1570942.

[28]

Jesse S, Lee H, Kalinin S. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev Sci Instrum 2006;77:073702. https://doi.org/10.1063/1.2214699.

[29]

Peng XY, Tang YC, Zhang BP, Zhu LF, Xun BW, Yu JR. High curie temperature BiFeO3-BaTiO3 lead-free piezoelectric ceramics: Ga3+ doping and enhanced insulation properties. J Appl Phys 2021;130:144104. https://doi.org/10.1063/5.0060780.

[30]

Li Q, Zhang MH, Zhu ZX, Wang K, Zhou JS, Yao FZ, et al. Poling engineering of (K,Na)NbO3-Based lead-free piezoceramics with orthorhombic-tetragonal coexisting phases. J Mater Chem C 2017;5:549-56. https://doi.org/10.1039/c6tc04723h.

[31]

Liu H, Liu YX, Song AZ, Li Q, Yin Y, Yao FZ, et al. Na)NbO3-based lead-free piezoceramics: one more step to boost applications. Natl Sci Rev 2022;9:nwac101. https://doi.org/10.1093/nsr/nwac101.

[32]

Li Z, Thong HC, Zhang YF, Xu Z, Zhou Z, Liu YX, et al. Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Adv Funct Mater 2020;31:2005012. https://https://doi.org/10.1002/adfm.202005012.

[33]

Zheng T, Jiang ZZ, Wu JG. Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region. Dalton Trans 2016;45:11277. https://doi.org/10.103189/c6dt01805j.

[34]

Cen ZY, Zhou CR, Yang HB, Zhou Q, Li WZ, Yan CL, et al. Remarkably high-temperature stability of Bi(FeAl)O3-BaTiO3 solid solution with near-zero temperature coefficient of piezoelectric properties. J Am Ceram Soc 2013;96:2252-6. https://doi.org/10.1111/jace.12326.

[35]

Tong K, Zhou CG, Li QN, Wang J, Yang L, Xu JW, et al. Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics. J Eur Ceram Soc 2018;38:1356-66. https://doi.org/10.1016/j.jeurceramsoc.2017.10.023.

[36]

Fan QL, Zhou CR, Zeng WD, Cao L, Yuan CL, Rao GH, et al. Normal-to-relaxor ferroelectric phase transition and electrical properties in Nb-modified 0.72BiFeO3-0.28BaTiO3 ceramics. J Electroceram 2015;36:1-7. https://doi.org/10.1007/s10832-015-0008-8.

[37]

Zhou CR, Feteira A, Shan X, Yang HB, Zhou Q, Cheng J, et al. Remarkably high-temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3-BaTiO3 ceramics. Appl Phys Lett 2012;101:032901. https://doi.org/10.1063/1.4736724.

[38]

Zhu LF, Zhang BP, Li S, Zhao L, Wang N, Shi X-C. Enhanced piezoelectric properties of Bi(Mg1/2Ti1/2)O3 modified BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary. J Alloys Compd 2016;664:602-8. https://doi.org/10.1016/j.jallcom.2016.01.003.

[39]

Xun BW, Song AZ, Yu JR, Yin Y, Li JF, Zhang BP. Lead-free BiFeO3-BaTiO3 ceramics with high curie temperature: fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients. ACS Appl Mater Interfaces 2021;13:4192-202. https://doi.org/10.1021/acsami.0c20381.

[40]

Song AZ, Liu YX, Feng TY, Li HT, Zhang YY, Wang XP, et al. Simultaneous enhancement of piezoelectricity and temperature stability in KNN-based lead-free ceramics via layered distribution of dopants. Adv Funct Mater 2022;32:2204385. https://doi.org/10.1002/adfm.202204385.

[41]

Xue HY, Zheng T, Wu JG. Insights into the correlation between tetragonal phase and temperature stability of potassium sodium niobate based ceramics from domain behaviors. Adv. Electron. Mater. 2021;6:2100257. https://doi.org/10.1002/aelm.202100257.

[42]

Zeng FF, Zhang JJ, Zhou C, Jiang L, Guo HT, Chen YX, et al. Enhanced electric field-induced strain properties in lead-free BF-BT-based piezoceramics by local structure inhomogeneity. ACS Sustainable Chem Eng 2022;10:1277-86. https://doi.org/10.1021/acssuschemeng.1c07359.

[43]

Fu J, Zuo R. Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg,Ti)O3-PbZrO3-PbTiO3 ferroelectric ceramics. Acta Mater 2013;61:3687-94. https://doi.org/10.1016/j.actamat.2013.02.055.

[44]

Zhou JS, Wang K, Yao FZ, Zheng T, Wu JG, Xiao DQ, et al. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity. J Mater Chem C 2015;3:8780. https://doi.org/10.1039/c5tc01357g.

[45]

Jesse S, Baddorf AP, Kalinin SV. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl Phys Lett 2006;88:62908. https://doi.org/10.1063/1.2172216.

[46]

Gobeljic D, Shvartsman VV, Wang K, Yao FZ, Li JF, Jo W, et al. Temperature dependence of the local piezoresponse in (K,Na)NbO3-based ceramics with large electromechanical strain. J Appl Phys 2014;116:66811. https://doi.org/10.1063/1.4891398.

Journal of Materiomics
Pages 971-979
Cite this article:
Song A, Tang Y-C, Li H, et al. Enhanced piezoelectricity in 0.7BiFeO3-0.3BaTiO3 lead-free ceramics: Distinct effect of poling engineering. Journal of Materiomics, 2023, 9(5): 971-979. https://doi.org/10.1016/j.jmat.2023.03.002

111

Views

5

Crossref

5

Web of Science

5

Scopus

Altmetrics

Received: 23 February 2023
Revised: 21 March 2023
Accepted: 25 March 2023
Published: 01 April 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return