AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Achieving high dielectric energy-storage properties through a phase coexistence design and viscous polymer process in BNT-based ceramics

Yule Yanga,Juanjuan Wanga( )Ruiyi JingbWenjing ShibLeiyang ZhangbChao LicXinyu ZengdFukang ChendGang LiudXiaolian ChaoeYan Yand( )Li Jinb( )
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, China
School of Materials and Energy, Southwest University, Chongqing, 400715, China
Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

In the last few decades, dielectric capacitors have gotten a lot of attention because they can store more power and charge and discharge very quickly. But it has a low energy-storage density (Wrec), efficiency (η), and temperature stability. By adding Pb(Mg1/3Nb2/3)O3 (PMN) and (Bi0·1Sr0.85)TiO3 (BST) to a nonstoichiometric (Bi0·51Na0.5)TiO3 (BNT) matrix, the goal is to change the phase transition properties and make the material more relaxor ferroelectric (RFE) by lowering the remnant polarization Pr and keeping the maximum polarization Pmax. A viscous polymer process (VPP) is used to improve the electric breakdown strength, which is also a key part of being able to store energy. By working together, ceramics with the formula 0.79[0.85BNT-0.15PMN]-0.21BST (BP-0.21BST) are made. The phase structure has been changed from a rhombohedral phase to a rhombohedral-tetragonal coexisted phase. This is beneficial for RFE properties and gives a Wrec of 6.45 J/cm3 and a η of 90% at 400 kV/cm. Also, the energy-storage property is very temperature stable between 30 and 150 ℃. These results show that process optimization and composition design can be used to improve the energy storage properties, and that the dielectric ceramic materials made can be used in high-powder pulse dielectric capacitors.

References

[1]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72–108. https://doi.org/10.1016/j.pmatsci.2018.12.005.

[2]

Yang Z, Du H, Jin L, Poelman D. High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J Mater Chem 2021;9:18026–85. https://doi.org/10.1039/D1TA04504K.

[3]

Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121:6124–72. https://doi.org/10.1021/acs.chemrev.0c01264.

[4]

Ren X, Jin L, Peng Z, Chen B, Qiao X, Wu D, et al. Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem Eng J 2020;390:124566. https://doi.org/10.1016/j.cej.2020.124566.

[5]

Wang W, Zhang L, Jing R, Hu Q, Alikin DO, Shur V Ya, et al. Enhancement of energy storage performance in lead-free barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design. Chem Eng J 2022;434:134678. https://doi.org/10.1016/j.cej.2022.134678.

[6]

Wang W, Zhang L, Li C, Alikin DO, Shur VY, Wei X, et al. Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chem Eng J 2022;446:137389. https://doi.org/10.1016/j.cej.2022.137389.

[7]

Liu G, Li Y, Shi M, Yu L, Chen P, Yu K, et al. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram Int 2019;45:19189–96. https://doi.org/10.1016/j.ceramint.2019.06.166.

[8]

Yang Z, Gao F, Du H, Jin L, Yan L, Hu Q, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 2019;58:768–77. https://doi.org/10.1016/j.nanoen.2019.02.003.

[9]

Yang Z, Du H, Jin L, Hu Q, Wang H, Li Y, et al. Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range. J Mater Chem 2019;7:27256–66. https://doi.org/10.1039/C9TA11314B.

[10]

Jin L, Li F, Zhang S. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 2014;97:1–27. https://doi.org/10.1111/jace.12773.

[11]

Zhang TF, Tang XG, Liu QX, Jiang YP, Huang XX, Zhou QF. Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J Phys D Appl Phys 2016;49:095302. https://doi.org/10.1088/0022-3727/49/9/095302.

[12]

Li Y, Sun N, Li X, Du J, Chen L, Gao H, et al. Multiple electrical response and enhanced energy storage induced by unusual coexistent-phase structure in relaxor ferroelectric ceramics. Acta Mater 2018;146:202–10. https://doi.org/10.1016/j.actamat.2017.12.048.

[13]

Qi X, Zhao Y, Sun E, Du J, Li K, Sun Y, et al. Large electrostrictive effect and high energy storage performance of Pr3+-doped PIN-PMN-PT multifunctional ceramics in the ergodic relaxor phase. J Eur Ceram Soc 2019;39:4060–9. https://doi.org/10.1016/j.jeurceramsoc.2019.05.045.

[14]

Ji H, Wang D, Bao W, Lu Z, Wang G, Yang H, et al. Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater 2021;38:113–20. https://doi.org/10.1016/j.ensm.2021.01.023.

[15]

Lv J, Li Q, Li Y, Tang M, Jin D, Yan Y, et al. Significantly improved energy storage performance of NBT-BT based ceramics through domain control and preparation optimization. Chem Eng J 2021;420:129900. https://doi.org/10.1016/j.cej.2021.129900.

[16]

Zhang L, Jing R, Huang Y, Hu Q, Alikin DO, Shur VY, et al. Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. J Materiomics 2022;8:527–36. https://doi.org/10.1016/j.jmat.2022.01.007.

[17]

Guo B, Yan Y, Tang M, Wang Z, Li Y, Zhang L, et al. Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chem Eng J 2021;420:130475. https://doi.org/10.1016/j.cej.2021.130475.

[18]

Zhang L, Cao S, Li Y, Jing R, Hu Q, Tian Y, et al. Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes. J Alloys Compd 2022;896:163139. https://doi.org/10.1016/j.jallcom.2021.163139.

[19]

Hu Q, Tian Y, Zhu Q, Bian J, Jin L, Du H, et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 2020;67:104264. https://doi.org/10.1016/j.nanoen.2019.104264.

[20]

Hu Q, Jin L, Wang T, Li C, Xing Z, Wei X. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J Alloys Compd 2015;640:416–20. https://doi.org/10.1016/j.jallcom.2015.02.225.

[21]

Wang T, Jin L, Li C, Hu Q, Wei X. Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 2015;98:559–66. https://doi.org/10.1111/jace.13325.

[22]

Yang Z, Du H, Qu S, Hou Y, Ma H, Wang J, et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J Mater Chem 2016;4:13778–85. https://doi.org/10.1039/C6TA04107H.

[23]

Shao T, Du H, Ma H, Qu S, Wang J, Wang J, et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem 2017;5:554–63. https://doi.org/10.1039/C6TA07803F.

[24]

Zhang M, Yang H, Lin Y, Yuan Q, Du H. Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy. Energy Storage Mater 2022;45:861–8. https://doi.org/10.1016/j.ensm.2021.12.037.

[25]

Li Y, Liu Y, Tang M, Lv J, Chen F, Li Q, et al. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process. Chem Eng J 2021;419:129673. https://doi.org/10.1016/j.cej.2021.129673.

[26]

Liu G, Tang M, Hou X, Guo B, Lv J, Dong J, et al. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem Eng J 2021;412:127555. https://doi.org/10.1016/j.cej.2020.127555.

[27]

Tian Y, Song P, Viola G, Shi J, Li J, Jin L, et al. Silver niobate perovskites: structure, properties and multifunctional applications. J Mater Chem 2022;10:14747–87. https://doi.org/10.1039/D2TA00905F.

[28]

Wang G, Li J, Zhang X, Fan Z, Yang F, Feteira A, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ Sci 2019;12:582–8. https://doi.org/10.1039/C8EE03287D.

[29]

Chen L, Li F, Gao B, Zhou C, Wu J, Deng S, et al. Excellent energy storage and mechanical performance in hetero-structure BaTiO3-based relaxors. Chem Eng J 2023;452:139222. https://doi.org/10.1016/j.cej.2022.139222.

[30]

Zhang M, Yang H, Yu Y, Lin Y. Energy storage performance of K0.5Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3. Chem Eng J 2021;425:131465. https://doi.org/10.1016/j.cej.2021.131465.

[31]

Luo C, Wei Y, Feng Q, Wang M, Luo N, Yuan C, et al. Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application. Chem Eng J 2022;429:132165. https://doi.org/10.1016/j.cej.2021.132165.

[32]

Sun E, Cao W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog Mater Sci 2014;65:124–210. https://doi.org/10.1016/j.pmatsci.2014.03.006.

[33]

Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – a review. Prog Mater Sci 2015;68:1–66. https://doi.org/10.1016/j.pmatsci.2014.10.002.

[34]

Joseph AJ, Sinha N, Goel S, Hussain A, Yadav H, Kumar B. New quaternary BNT-BT-PMN-PT ceramic: ferro-/piezo-/pyroelectric characterizations. J Mater Sci Mater Electron 2019;30:12729–38. https://doi.org/10.1007/s10854-019-01637-x.

[35]

Yang Y, Jing R, Wang J, Zhang L, Huang Y, Jin L. Nonstoichiometric effect on dielectric and large-signal electromechanical properties of environmentally friendly BNT-6BT ferroelectric ceramics. Ceram Int 2022;48:14329–37. https://doi.org/10.1016/j.ceramint.2022.01.323.

[36]

Yang Y, Jing R, Wang J, Lu X, Du H, Jin L. Large electrostrain and high energy-storage properties of (Sr1/3Nb2/3)4+-substituted (Bi0.51Na0.5)TiO3-0.07BaTiO3 lead-free ceramics. Ceram Int 2022;48:23975–82. https://doi.org/10.1016/j.ceramint.2022.05.072.

[37]

Song Z, Liu H, Zhang S, Wang Z, Shi Y, Hao H, et al. Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J Eur Ceram Soc 2014;34:1209–17. https://doi.org/10.1016/j.jeurceramsoc.2013.11.039.

[38]

Wang J, Tang L, Shen B, Zhai J. Property optimization of BST-based composite glass ceramics for energy-storage applications. Ceram Int 2014;40:2261–6. https://doi.org/10.1016/j.ceramint.2013.07.145.

[39]

Liu G, Dong J, Zhang L, Yan Y, Jing R, Jin L. Phase evolution in (1-x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: a study focusing on dielectric and ferroelectric characteristics. J Materiomics 2020;6:677–91. https://doi.org/10.1016/j.jmat.2020.05.005.

[40]

Bokov AA, Ye ZG. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41:31–52. https://doi.org/10.1007/s10853-005-5915-7.

[41]

Jaitanong N, Vittayakorn WC, Chaipanich A. Phase development and dielectric responses in PMN-BNT ceramics. Ceram Int 2010;36:1479–83. https://doi.org/10.1016/j.ceramint.2010.01.003.

[42]

Hu F, Chen X, Peng P, Cao F, Dong X, Wang G. High permittivity (1-x)Bi1/2Na1/2TiO3-xPbMg1/3Nb2/3O3 ceramics for high-temperature-stable capacitors. J Am Ceram Soc 2018;101:4434–40. https://doi.org/10.1111/jace.15730.

[43]

Liu G, Li Y, Guo B, Tang M, Li Q, Dong J, et al. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem Eng J 2020;398:125625. https://doi.org/10.1016/j.cej.2020.125625.

[44]

Wang W, Zhang L, Yang Y, Shi W, Huang Y, Alikin DO, et al. Enhancing energy storage performance in Na0.5Bi0.5TiO3-based lead-free relaxor ferroelectric ceramics along a stepwise optimization route. J Mater Chem 2023;11:2641–51. https://doi.org/10.1039/D2TA09395B.

[45]

Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, et al. Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces 2016;8:31109–19. https://doi.org/10.1021/acsami.6b08879.

[46]

Wang W, Zhang L, Shi W, Yang Y, Alikin D, Shur V, et al. Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy. ACS Appl Mater Interfaces 2023;15:6990–7001. https://doi.org/10.1021/acsami.2c21969.

[47]

Shi W, Zhang L, Jing R, Hu Q, Zeng X, Alikin DO, et al. Relaxor antiferroelectric-like characteristic boosting enhanced energy storage performance in eco-friendly (Bi0.5Na0.5)TiO3-based ceramics. J Eur Ceram Soc 2022;42:4528–38. https://doi.org/10.1016/j.jeurceramsoc.2022.04.057.

[48]

Shi W, Yang Y, Zhang L, Jing R, Hu Q, Alikin DO, et al. Enhanced energy storage performance of eco-friendly BNT-based relaxor ferroelectric ceramics via polarization mismatch-reestablishment and viscous polymer process. Ceram Int 2022;48:6512–9. https://doi.org/10.1016/j.ceramint.2021.11.197.

[49]

Tian Y, Jin L, Hu Q, Yu K, Zhuang Y, Viola G, et al. Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J Mater Chem 2019;7:834–42. https://doi.org/10.1039/C8TA10075F.

[50]

Tian Y, Li J, Hu Q, Jin L, Yu K, Li J, et al. Ferroelectric transitions in silver niobate ceramics. J Mater Chem C 2019;7:1028–34. https://doi.org/10.1039/C8TC05451G.

[51]

Jing R, Zhang L, Hu Q, Alikin DO, Shur VY, Wei X, et al. Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1-x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. J Materiomics 2022;8:335–46. https://doi.org/10.1016/j.jmat.2021.09.002.

[52]

Morozov MI, Damjanovic D. Hardening-softening transition in Fe-doped Pb(Zr,Ti)O3 ceramics and evolution of the third harmonic of the polarization response. J Appl Phys 2008;104:034107. https://doi.org/10.1063/1.2963704.

[53]

Zhang L, Liu W, Chen W, Ren X, Sun J, Gurdal EA, et al. Mn dopant on the “domain stabilization” effect of aged BaTiO3 and PbTiO3-based piezoelectrics. Appl Phys Lett 2012;101:242903. https://doi.org/10.1063/1.4770311.

[54]

Zhang L, Pu Y, Chen M, Liu G. Antiferroelectric-like properties in MgO-modified 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 ceramics for high power energy storage. J Eur Ceram Soc 2018;38:5388–95. https://doi.org/10.1016/j.jeurceramsoc.2018.08.010.

[55]

Wang H, Cao M, Huang R, Tao C, Pan W, Hao H, et al. Preparation of BaTiO3@NiO core-shell nanoparticles with antiferroelectric-like characteristic and high energy storage capability. J Eur Ceram Soc 2021;41:4129–37. https://doi.org/10.1016/j.jeurceramsoc.2021.02.042.

[56]

Cao L, Yuan Y, Li E, Zhang S. Relaxor regulation and improvement of energy storage properties of Sr2NaNb5O15-based tungsten bronze ceramics through B-site substitution. Chem Eng J 2021;421:127846. https://doi.org/10.1016/j.cej.2020.127846.

[57]

Ding Y, Que W, He J, Bai W, Zheng P, Li P, et al. Realizing high-performance capacitive energy storage in lead-free relaxor ferroelectrics via synergistic effect design. J Eur Ceram Soc 2022;42:129–39. https://doi.org/10.1016/j.jeurceramsoc.2021.09.051.

[58]

Chen S, Yang T, Wang J, Yao X. Effects of glass additions on energy storage performance of (Pb0.97La0.02)(Zr0.92Sn0.05Ti0.03)O3 antiferroelectric thick films. J Advert Dielectr 2013;3:1350012. https://doi.org/10.1142/S2010135X13500124.

[59]

Zhang L, Pu Y, Chen M, Wei T, Keipper W, Shi R, et al. High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J Eur Ceram Soc 2020;40:71–7. https://doi.org/10.1016/j.jeurceramsoc.2019.09.001.

[60]

Li J, Jin L, Tian Y, Chen C, Lan Y, Hu Q, et al. Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics. J Materiomics 2021. https://doi.org/10.1016/j.jmat.2021.10.005.

[61]

Lin Y, Li D, Zhang M, Zhan S, Yang Y, Yang H, et al. Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS Appl Mater Interfaces 2019;11:36824–30. https://doi.org/10.1021/acsami.9b10819.

[62]

Luo N, Han K, Liu L, Peng B, Wang X, Hu C, et al. Lead-free AgLaNbO3 antiferroelectric ceramics with high-energy storage density and efficiency. J Am Ceram Soc 2019;102:4640–7. https://doi.org/10.1111/jace.16309.

[63]

Shi P, Li T, Lou X, Yu Z, Zhu X, Zhou C, et al. Large electric-field-induced strain and energy storage properties in Bi0.5Na0.5TiO3-(0.5Ba0.7Ca0.3TiO3-0.5BaTi0.8Zr0.2O3) lead-free relaxor ferroelectric ceramics. J Alloys Compd 2021;860:158369. https://doi.org/10.1016/j.jallcom.2020.158369.

[64]

Tian Y, Jin L, Zhang H, Xu Z, Wei X, Viola G, et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J Mater Chem 2017;5:17525–31. https://doi.org/10.1039/C7TA03821F.

[65]

Wang D, Fan Z, Li W, Zhou D, Feteira A, Wang G, et al. High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics. ACS Appl Energy Mater 2018;1:4403–12. https://doi.org/10.1021/acsaem.8b01099.

[66]

Wang Z, Kang R, Liu W, Zhang L, He L, Zhao S, et al. Bi0.5Na0.5)TiO3-based relaxor ferroelectrics with medium permittivity featuring enhanced energy-storage density and excellent thermal stability. Chem Eng J 2022;427:131989. https://doi.org/10.1016/j.cej.2021.131989.

[67]

Yan F, Huang K, Jiang T, Zhou X, Shi Y, Ge G, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater 2020;30:392–400. https://doi.org/10.1016/j.ensm.2020.05.026.

[68]

Yan Z, Zhang D, Zhou X, Qi H, Luo H, Zhou K, et al. Silver niobate based lead-free ceramics with high energy storage density. J Mater Chem 2019;7:10702–11. https://doi.org/10.1039/C9TA00995G.

[69]

Zhang L, Pu X, Chen M, Bai S, Pu Y. Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics. J Eur Ceram Soc 2018;38:2304–11. https://doi.org/10.1016/j.jeurceramsoc.2017.11.053.

[70]

Zhang X, Wang H, Bu X, Zheng P, Li L, Wen F, et al. Simultaneously realizing superior energy storage properties and outstanding charge-discharge performances in tungsten bronze-based ceramic for capacitor applications. Inorg Chem 2021;60:6559–68. https://doi.org/10.1021/acs.inorgchem.1c00362.

[71]

Zhao P, Chen L, Li L, Wang X. Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via composite strategy design. J Mater Chem 2021. https://doi.org/10.1039/D1TA07643D.

[72]

Zhu C, Cai Z, Luo B, Guo L, Li L, Wang X. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J Mater Chem 2020;8:683–92. https://doi.org/10.1039/C9TA10347C.

[73]

Zhu L-F, Yan Y, Leng H, Li X, Cheng L-Q, Priya S. Energy-storage performance of NaNbO3 based multilayered capacitors. J Mater Chem C 2021;9:7950–7. https://doi.org/10.1039/D1TC01826D.

[74]

Morozov MI, Damjanovic D. Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening, and softening. J Appl Phys 2010;107:034106. https://doi.org/10.1063/1.3284954.

[75]

Wang T, Hu J, Yang H, Jin L, Wei X, Li C, et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J Appl Phys 2017;121:084103. https://doi.org/10.1063/1.4977107.

[76]

Zheng D, Zuo R. Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J Eur Ceram Soc 2017;37:413–8. https://doi.org/10.1016/j.jeurceramsoc.2016.08.021.

Journal of Materiomics
Pages 1004-1014
Cite this article:
Yang Y, Wang J, Jing R, et al. Achieving high dielectric energy-storage properties through a phase coexistence design and viscous polymer process in BNT-based ceramics. Journal of Materiomics, 2023, 9(6): 1004-1014. https://doi.org/10.1016/j.jmat.2023.03.006

148

Views

3

Crossref

3

Web of Science

6

Scopus

Altmetrics

Received: 08 February 2023
Revised: 10 March 2023
Accepted: 15 March 2023
Published: 14 April 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return