AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Excellent thermal stability and high energy storage performances of BNT-based ceramics via phase-structure engineering

Mingkun Wanga,b,Tian Baia,cAina Hea,bZhongbin Panc( )Jinghao ZhaocLuomeng TangcZhihe ZhaoaJinjun LiucShushuang Lid( )Weixing Xiaa,b
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
University of Chinese Academy of Science, Beijing, 100049, China
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
Ningbo Productivity Promotion Center, Ningbo, 315040, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Herein, a novel strategy for regulating the phase structure was used to significantly enhance the recoverable energy storage density (Wrec) and the thermal stability via designing the (1-x)[(Bi0.5Na0.5)0.7Sr0.3TiO3]-xBiScO3 ((1-x)BNST-xBS) relaxor ferroelectric ceramics. The incorporation of BS into BNST ceramics markedly increases the local micro-structure disorder, causing a high polarization and inhibiting polarization hysteresis for 0.95BNST-0.05BS ceramics, leading to a large Wrec of 5.41 J/cm3 with an ideal efficiency (η) of 78.5%. Meanwhile, transmission electron microscope (TEM) results further proved that the nano-domain structure and the tetragonal (P4bm) phase superlattice structure of 0.95BNST-0.05BS ceramics possess an excellent thermal stability (20–200 ℃). An outstanding Wrec value of 3.18 × (1.00 ± 0.03) J/cm3 and an η value of 74.500 ± 0.025 are achieved under a temperature range from 20 ℃ to 200 ℃. This work provides a promising method for phase-structure design that can make it possible to apply temperature-insensitive ceramic dielectrics with a high energy storage density in harsh environments.

References

[1]

Wang P, Yao L, Pan Z, Shi S, Yu J, Zhou Y, et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv Mater 2021;33(42):2103338.

[2]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, et al. Perovskite lead free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72–108.

[3]

Zhao P, Wang H, Wu L, Chen L, Cai Z, Li L, et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater 2019;9:1803048.

[4]

Li D, Zeng X, Li Z, Shen ZY, Hao H, Luo W, et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 2021;10:675–703.

[5]

Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121:6124–72.

[6]

Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, et al. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 2016;28(10):2055–61.

[7]

Li J, Li F, Xu Z, Zhang S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 2018;30:1802155.

[8]

Pan Z, Wang P, Hou X, Yao L, Zhang G, Wang J, et al. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance. Adv Energy Mater 2020;10:2001536.

[9]

Li X, Xing J, Wang F, Chen N, Chen H, Chen Q, et al. Realizing high energy density and efficiency simultaneously in (Bi0.5Na0.5)0.7Sr0.3TiO3-based ceramics via introducing linear dielectric CaTiO3. J Mater Chem 2022;10:18343–53.

[10]

Cai Z, Zhu C, Wang H, Zhao P, Yu Y, Li L, et al. Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering. J Mater Chem 2019;7:17283.

[11]

Zhao M, Wang J, Yuan H, Zheng Z, Zhao L. Energy storage performance and phase transition under high electric field in Na/Ta co-doped AgNbO3 ceramics. J Materiomics 2023;9:19–26.

[12]

Dai B, Biesold GM, Zhang M, Zou H, Ding Y, Wang ZL, et al. Piezophototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem Soc Rev 2021;50:13646–91.

[13]

Dai BY, Fang JJ, Yu YR, Sun ML, Huang HM, Lu CH, et al. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv Mater 2020;32(12):1906361.

[14]

Luo B, Wang X, Tian E, Song H, Wang H, Li L. Enhanced energy-storage density and high efficiency of lead-free CaTiO3–BiScO3 linear dielectric ceramics. ACS Appl Mater Interfaces 2017;9:19963–72.

[15]

Wu L, Luo B, Tian E. Ferroelectric properties of BaTiO3-BiScO3 weakly coupled relaxor energy-storage ceramics from first-principles calculations. J Alloys Compd 2021;866:158933.

[16]

Yan B, Chen K, An L. Design and preparation of lead-free (Bi0.4Na0.2K0.2Ba0.2)TiO3-Sr(Mg1/3Nb2/3)O3 high-entropy relaxor ceramics for dielectric energy storage. Chem Eng J 2023;453:139921.

[17]

Kang R, Wang Z, Yang W, Zhao Y, Zhang L, Lou X. Enhanced energy storage performance of Bi0.5Na0.5TiO3-based ceramics via grain tuning and relaxor construction. Chem Eng J 2023;455:140924.

[18]

Zdorovets MV, Kozlovskiy AL, Shlimas DI, Borgekov DB. Phase transformations in FeCo– Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci Mater Electron 2021;32:16694–705.

[19]

Turchenko VA, Trukhanov AV, Bobrikov IA, Trukhanov SV, Balagurov AM. Study of the crystalline and magnetic structures of BaFe11.4Al0.6O19 in a wide temperature range. J Surf Investig 2015;9:17–23.

[20]

Zhumatayeva IZ, Kenzhina IE, Kozlovskiy AL, Zdorovets MV. The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics. J Mater Sci Mater Electron 2020;31:6764–72.

[21]

Trukhanov SV, Troyanchuk IO, Hervieu M, Szymczak H, Bärner K. Magnetic and electrical properties of LBaMn2O6-γ (L = Pr, Nd, Sm, Eu, Gd, Tb) manganites. Phys Rev B 2002;66:184424.

[22]

Tang X, Din C, Yu S, Liu Y, Luo H, Zhang D, et al. Synthesis of dielectric polystyrene via one-step nitration reaction for large-scale energy storage. Chem Eng J 2022;446:137281.

[23]

Ding C, Tang X, Yu S, Chen S, Liu Z, Luo H, et al. Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based coreshell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer. J Mater Chem C 2022;10(16):6323–33.

[24]

Zhang Y, Xie A, Fu J, Jiang X, Li T, Zhou C, et al. Superior energy-storage properties in Bi0.5Na0.5TiO3-based lead-free ceramics via simultaneously manipulating multiscale structure and field-induced structure transition. ACS Appl Mater Interfaces 2022;14:40043–51.

[25]

Li C, Liu J, Bai W, Wu S, Zheng P, Zhang J, et al. Superior energy storage performance in (Bi0.5Na0.5)TiO3-based lead-free relaxor ferroelectrics for dielectric capacitor application via multiscale optimization design. J Mater Chem 2022;10(17):9535–46.

[26]

Spreitzer M, Valant M, Suvorov D. Sodium deficiency in Na0.5Bi0.5TiO3. J Mater Chem 2007;17:185–92.

[27]

Zhang L, Pu Y, Chen M, Wei T, Peng X. Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J 2020;383:123154.

[28]

Liu L, Knapp M, Ehrenberg H, Fang L, Schmitt LA, Fuess H, et al. The phase diagram of K0.5Na0.5NbO3-Bi1/2Na1/2TiO3. J Appl Crystallogr 2016;49:574–84.

[29]

Zhang L, Pu X, Chen M, Bai S, Pu Y. Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics. J Eur Ceram Soc 2018;38:2304–11.

[30]

Pu Y, Zhang L, Cui Y, Chen M. High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1-y)SnyO3 ceramics. ACS Sustainable Chem Eng 2018;6:6102–9.

[31]

Acosta M, Zang J, Jo W, Rödel J. High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J Eur Ceram Soc 2012;32:4327–34.

[32]

Wang T, Liu J, Kong L, Yang H, Wang F, Li C. Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics. Ceram Int 2020;46:25392–8.

[33]

He H, Lu X, Li M, Wang Y, Li Z, Lu Z, et al. Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics. J Mater Chem C 2020;8:2411–8.

[34]

Li D, Lin Y, Zhang M, Yang H. Achieved ultrahigh energy storage properties and outstanding charge-discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based ceramics by introducing a linear additive. Chem Eng J 2020;392:123729.

[35]

Trukhanov SV, Trukhanov AV, Turchenko VA, Trukhanov An V, Trukhanova EL, Tishkevich DI, et al. Polarization origin and iron positions in indium doped barium hexaferrites. Ceram Int 2018;44:290–300.

[36]

Kozlovskiy AL, Alina A, Zdorovets MV. Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J Mater Sci Mater Electron 2021;32:3863–77.

[37]

Hao SZ, Zhou D, Pang LX, Dang MZ, Sun SK, Zhou T, et al. Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in Na2O-Bi2O3-MoO3 ternary system: a comprehensive study. J Mater Chem C 2022;10:2008–16.

[38]

Hao SZ, Zhou D, Hussain F, Liu WF, Su JZ, Wang DW, et al. Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x)Bi2/3MoO4 (x = 0.2-0.8) ceramics with low sintering temperatures. J Eur Ceram Soc 2020;40:3569–76.

[39]

Ogihara H, Randall CA, McKinstry ST. High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. J Am Ceram Soc 2009;92(8):1719–24.

[40]

Zuo R, Ye C, Fang X. Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3-BiScO3 Ceramics. Jpn J Appl Phys 2007;46:6733.

[41]

Yang C, Xu X, Ali W, Wang Y, Wang Y, Yang Y, et al. Piezoelectricity in excess of 800 pC/N over 400 ℃ in BiScO3-PbTiO3-CaTiO3 ceramics. ACS Appl Mater Interfaces 2021;13:33253–61.

[42]

Gonnard P, Troccaz M. Dopant distribution between A and B sites in the PZT ceramics of type ABO3. J Solid State Chem 1978;23(3–4):321–6.

[43]

Turchenko V, Bondyakov AS, Trukhanov S, Fina I, Korovushkin VV, Balasoiu M, et al. Microscopic mechanism of ferroelectric properties in barium hexaferrites. J Alloys Compd 2023;931:167433.

[44]

Vinnik DA, Starikov A Yu, Zhivulin VE, Astapovich KA, Turchenko VA, Zubar TI, et al. Structure and magnetodielectric properties of titanium substituted barium hexaferrites. Ceram Int 2021;47:17293–306.

[45]

Zhao J, Pan Z, Tang L, Shen Y, Chen X, Li H, et al. Greatly enhanced discharged energy density and efficiency of BiFeO3-Based ceramics by regulating insulation performance. Mater Today Phys 2022;27:100821.

[46]

Belik AA, Iikubo S, Kodama K, Igawa Ni, Shamoto S, Maie M, et al. BiScO3: centrosymmetric BiMnO3-type oxide. J Am Chem Soc 2006;128:706–7.

[47]

Li W, Zhou D, Liu W, Su J, Hussain F, Wang D, et al. High-temperature BaTiO3-based ternary dielectric multilayers for energy storage applications with high efficiency. Chem Eng J 2021;414:128760.

[48]

Liu Z, Lu J, Mao Y, Ren P, Fan H. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J Eur Ceram Soc 2018;38:4939–45.

[49]

Shi P, Zhu X, Lou X, Yang B, Liu Q, Kong C, et al. Tailoring ferroelectric polarization and relaxor of BNT-based lead-free relaxors for superior energy storage properties. Chem Eng J 2022;428:132612.

[50]

Tian Y, Song P, Gu R, Xu Y, Jin L, Wang T, et al. Li+ and Sm3+ co-doped AgNbO3-based antiferroelectric ceramics for high-power energy storage. Ceram Int 2022;48:32703–11.

[51]

Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr A 1975;31:756–62.

[52]

Liu L, Knapp M, Ehrenberg H, Fang L, Fan H, Schmitt LA, et al. Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system. J Eur Ceram Soc 2017;37:1387–99.

[53]

Liu L, Shi D, Knapp M, Ehrenberg H, Fang L, Chen J. Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J Appl Phys 2014;116:184104.

[54]

Turchenko VA, Trukhanov SV, Kostishin VG, Damay F, Porcher F, Klygach DS, et al. Features of structure, magnetic state and electrodynamic performance of SrFe12-xInxO19. Sci Rep 2021;11:18342.

[55]

Turchenko VA, Trukhanov SV, Kostishin VG, Damay F, Porcher F, Klygach DS, et al. Impact of In3+ cations on structure and electromagnetic state of M-type hexaferrites. J Energy Chem 2022;69:667–76.

[56]

Liu L, Ma X, Knapp M, Ehrenberg H, Peng B, Fang L, et al. Thermal evolution of polar nanoregions identified by the relaxation time of electric modulus in the Bi1/2Na1/2TiO3 system. EPL 2017;118:47001.

[57]

Liu L, Ren S, Zhang J, Peng B, Fang L, Wang D. Revisiting the temperature-dependent dielectric permittivity of Ba(Ti1-xZrx)O3. J Am Ceram Soc 2018;101:2408–16.

[58]

Liu L, Knapp M, Schmitt LA, Ehrenberg H, Fang L, Fuess H, et al. Structure and dielectric dispersion in cubic-like 0.5K0.5Na0.5NbO3-0.5Na1/2Bi1/2TiO3 ceramic. EPL 2016;114:47011.

[59]

Trukhanov SV, Trukhanov AV, Vasiliev AN, Szymczak H. Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. J Exp Theor Phys 2010;111:209–14.

[60]

Kozlovskiy A, Egizbek K, Zdorovets MV, Ibragimova M, Shumskaya A, Rogachev AA, et al. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 2020;20:4851.

[61]

Hu D, Pan Z, Zhang X, Ye H, He Z, Wang M, et al. Greatly enhanced discharge energy density and efficiency of novel relaxor ferroelectric BNT-BKT-based ceramics. J Mater Chem C 2020;8:591–601.

[62]

Yan B, Fan H, Yadav A, Wang C, Zheng X, Wang H, et al. Enhanced energy-storage performance and thermally stable permittivity for K0.5Na0.5NbO3 modified [(Na0.5Bi0.5)0.84Sr0.16]0.98La0.01TiO3 lead-free perovskite ceramics. Ceram Int 2020;46:9637–45.

[63]

Shi P, Zhu L, Gao W, Yu Z, Lou X, Wang X, et al. Large energy storage properties of lead-free (1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBiAlO3 ceramics at broad temperature range. J Alloys Compd 2019;784:788–93.

[64]

Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S. Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 2019;5:385–93.

[65]

Chen Z, Bu X, Ruan B, Du J, Zheng P, Li L, et al. Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. J Eur Ceram Soc 2020;40:5450–7.

[66]

Liu G, Li Y, Guo B, Tang M, Li Q, Dong J, et al. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem Eng J 2020;398:125625.

[67]

Wang Q, Gong P, Wang C. High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3-Bi(Zn1/2Zr1/2)O3 relaxor ferroelectrics. Ceram Int 2020;46:22452–9.

[68]

Jin Q, Zhao L, Cui B, Wang J, Ma H, Zhang R, et al. Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains via a core-shell structural design. J Mater Chem C 2020;8:5248–58.

[69]

Huang Y, Zhao C, Wu B, Wu J. Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl Mater Interfaces 2020;12:23885–95.

[70]

Lai D, Yao Z, You W, Gao B, Guo Q, Lu P, et al. Modulating the energy storage performance of NaNbO3-based lead-free ceramics for pulsed power capacitors. Ceram Int 2020;46:13511–6.

[71]

Zhang X, Hu D, Pan Z, Lv X, He Z, Yang F, et al. Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem Eng J 2021;406:126818.

[72]

Liang Y, Xia W, Li Z, Liu Y, Lu D, Feng Y, et al. A tunable B-site doping SBT-BNT-SMN ceramic composite with high recoverable energy density and temperature stability. J Mater Sci 2021;56:19564–76.

[73]

Wang J, Zhang F, Peng Z, Chao X, Yang Z. Sodium bismuth titanate-based perovskite ceramics with high energy storage efficiency and discharge performance. J Materiomics 2022;8:1077–85.

[74]

Che Z, Ma L, Luo G, Xu C, Cen Z, Feng Q, et al. Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano Energy 2022;100:107484.

[75]

Zhao J, Bao S, Tang L, Shen Y, Su Z, Yang F, et al. Improved energy storage performances of lead-free BiFeO3-based ceramics via doping Sr0.7La0.2TiO3. J Alloys Compd 2022;898:162795.

[76]

Li Q, Ji S, Wang D, Zhu J, Li L, Wang W, et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors. J Eur Ceram Soc 2021;41:387–93.

[77]

Li Y, Liu Y, Tang M, Lv J, Chen F, Li Q, et al. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process. Chem Eng J 2021;419:129673.

[78]

Jiang Y, Zhu C, Zhao P, Bi K, Liu J, Guo L, et al. Excellent energy storage performance of NaNbO3-based antiferroelectric ceramics with ultrafast charge/discharge rate. J Eur Ceram Soc 2021;41:6465–73.

[79]

Dong X, Li X, Chen X, Chen H, Sun C, Shi J, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J Materiomics 2021;7:629–39.

[80]

Dong X, Li X, Chen X, Chen H, Sun C, Shi J, et al. High energy storage and ultrafast discharge in NaNbO3-based lead-free dielectric capacitors via a relaxor strategy. Ceram Int 2021;47:3079–88.

[81]

Kong X, Yang L, Cheng Z, Zhang S. Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications. J Am Ceram Soc 2020;103:1722–31.

[82]

Liu L, Chu B, Li P, Fu P, Du J, Hao J, et al. Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry. Chem Eng J 2022;429:132548.

[83]

Ding Y, Li P, He J, Que W, Bai W, Zheng P, et al. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos B Eng 2022;230:109493.

[84]

Yang H, Yan F, Lin Y, Wang T. Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics. Appl Phys Lett 2017;111:253903.

[85]

Jan A, Liu H, Hao H, Yao Z, Emmanuel M, Pan W, et al. Enhanced dielectric breakdown strength and ultra-fast discharge performance of novel SrTiO3 based ceramics system. J Alloys Compd 2020;830:154611.

[86]

Wang M, Xie A, Fu J, Zuo R. Energy storage properties under moderate electric fields in BiFeO3-based lead-free relaxor ferroelectric ceramics. Chem Eng J 2022;440:135789.

[87]

Tang H, Hu Y, Chen X, Jian X, Zhao X, Yao Y, et al. Enhancement of energy-storage properties in BiFeO3-based lead-free bulk ferroelectrics. Ceram Int 2022;48:16792–9.

[88]

Liu S, Feng W, Li J, Zhao C, Hu C, He B, et al. Achieving high energy storage density and efficiency simultaneously in Sr(Nb0.5Al0.5)O3 modified BiFeO3 based lead-free ceramics. Chem Eng J 2023;451:138916.

[89]

Luo N, Tang X, Han K, Ma L, Chen Z, Chen X, et al. Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO3-based antiferroelectric ceramics. J Mater Res 2021;36(5):1067–75.

[90]

Chao W, Yang T, Li Y, Liu Z. Enhanced energy storage density in Ca and Ta co-doped AgNbO3 antiferroelectric ceramics. J Am Ceram Soc 2020;103:7283–90.

[91]

Ma L, Chen Z, Che Z, Feng Q, Cen Z, Toyohisa F, et al. Structure and energy storage performance of lanthanide elements doped AgNbO3 lead-free antiferroelectric ceramics. J Eur Ceram Soc 2022;42:2204–11.

[92]

Yang D, Lan Y, Yuan C, Lai H, Wu J, Feng Q, et al. Enhanced energy storage density of antiferroelectric AgNbO3-based ceramics by Bi/Ta modification at A/B sites. J Mater Sci Mater Electron 2022;33:3081–90.

[93]

Li T, Cao W, Chen P, Wang J, Wang C. Effects of sintering method on the structural, dielectric and energy storage properties of AgNbO3 lead-free antiferroelectric ceramics. J Mater Sci 2021;56:13499–508.

[94]

Ai J, Chen X, Luo L, Zheng R, Yu L. Novel transparent Eu and Hf co-doped AgNbO3 antiferroelectric ceramic with high-quality energy-storage performance. Ceram Int 2022;48:23630–7.

[95]

Xua Y, Yang Z, Xu K, Tian J, Zhang D, Zhan M, et al. Enhanced energy-storage performance in silver niobate-based dielectric ceramics sintered at low temperature. J Alloys Compd 2022;913:165313.

[96]

Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nano domain design. Science 2019;365:578–82.

[97]

Zdorovets MV, Kozlovskiy AL, Borgekov DB, Shlimas DI. Influence of irradiation with heavy Kr15+ ions on the structural, optical and strength properties of BeO ceramic. J Mater Sci Mater Electron 2021;32:15375–85.

[98]

Trukhanov SV, Trukhanov AV, Stepin SG, Szymczak H, Botez CE. Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys Solid State 2008;50:886–93.

[99]

Yang H, Lu Z, Li L, Bao W, Ji H, Li J, et al. Novel BaTiO3-based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance. ACS Appl Mater Interfaces 2020;12(39):43942–9.

[100]

Zhao P, Tang B, Fang Z, Si F, Yang C, Zhang S. Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3. Chem Eng J 2021;403:126290.

[101]

Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater 2019;29(35):1903877.

[102]

Liu J, Li P, Li C, Bai W, Wu S, Zheng P, et al. Synergy of a stabilized antiferroelectric phase and domain engineering boosting the energy storage performance of NaNbO3-based relaxor antiferroelectric ceramics. ACS Appl Mater Interfaces 2022;14:17662–73.

[103]

Wei Y, Zhang N, Jin C, Shen J, Xie J, Dai Z, et al. A Bi1/2K1/2TiO3-based ergodic relaxor ceramic for temperature-stable energy storage applications. Mater Des 2021;207:109887.

Journal of Materiomics
Pages 1015-1023
Cite this article:
Wang M, Bai T, He A, et al. Excellent thermal stability and high energy storage performances of BNT-based ceramics via phase-structure engineering. Journal of Materiomics, 2023, 9(6): 1015-1023. https://doi.org/10.1016/j.jmat.2023.03.007

111

Views

6

Crossref

8

Web of Science

10

Scopus

Altmetrics

Received: 13 February 2023
Revised: 09 March 2023
Accepted: 17 March 2023
Published: 14 April 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return