AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Two-dimensional Bi2O2Se nanosheets for sensitive and fast-response high-temperature photodetectors

Xiaobin ZouRuize WangYong Sun( )Chengxin Wang( )
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional Bi2O2Se with unique crystal structure and ultrahigh carrier mobility has been catching widespread attention and demonstrated great potential in nanoelectronic and optoelectronic devices. The existence of lattice oxygen ensures its ultrahigh stability at ambient environment and make it promising for high-temperature applications. Here, through systematical characterizations, the high air stability of Bi2O2Se nanosheets at temperatures up to 250 ℃ is evidently demonstrated. The fabricated photodetectors based on the as-grown Bi2O2Se nanosheets show high stability, high sensitivity (~5319 A/W at 250 ℃ with a bias of 1 V) and fast response (several milliseconds) from room temperature to 250 ℃. Besides, it was observed that the devices also show good photoresponse covering UV, visible and infrared regions at high temperatures. These results suggest their promising high-performance applications serving under harsh conditions.

References

[1]

Lu JT, Zheng ZQ, Yao JD, Gao W, Zhao Y, Xiao Y, et al. 2D In2S3 nanoflake coupled with graphene toward high-sensitivity and fast-response bulk-silicon Schottky photodetector. Small 2019;15:1904912. https://doi.org/10.1002/smll.201904912.

[2]

Yang F, Zheng Z, He Y, Liu P, Yang G. A new wide bandgap semiconductor: carbyne nanocrystals. Adv Funct Mater 2021;31:2104254. https://doi.org/10.1002/adfm.202104254.

[3]

Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B, et al. Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors. Adv Funct Mater 2019;29:1807979. https://doi.org/10.1002/adfm.201807979.

[4]

Zhang JT, Zhang TN, Yan L, Zhu C, Shen WF, Hu CG, et al. Colossal room-temperature terahertz topological response in type-Ⅱ weyl semimetal NbIrTe4. Adv Mater 2022;34:2204621. https://doi.org/10.1002/adma.202204621.

[5]

Luo P, Wang FK, Qu JY, Liu KL, Hu XZ, Liu KW, et al. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv Funct Mater 2021;31:2008351. https://doi.org/10.1002/adfm.202008351.

[6]

Zou XB, Xie DY, Sun Y, Wang CX. Nanowires mediated growth of β-Ga2O3 nanobelts for high-temperature (> 573 K) solar-blind photodetectors. Nano Res 2022. https://doi.org/10.1007/s12274-022-5243-0.

[7]

Yang T, Chen S, Li X, Xu X, Gao F, Wang L, et al. High-performance SiC nanobelt photodetectors with long-term stability against 300 ℃ up to 180 days. Adv Funct Mater 2019;29:1806250. https://doi.org/10.1002/adfm.201806250.

[8]

Sun Y, Sun B, He JB, Yang GW, Wang CX. Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments. Nat Commun 2020;11:647. https://doi.org/10.1038/s41467-019-14244-5.

[9]

Jin Z, He D, Zhou Q, Mao P, Ding L, Wang J. Bilayer heterostructured PThTPTI/WS2 photodetectors with high thermal stability in ambient environment. ACS Appl Mater Interfaces 2016;8:33043–50. https://doi.org/10.1021/acsami.6b12090.

[10]

Zou Y, Zhang Z, Yan J, Lin L, Huang G, Tan Y, et al. High-temperature flexible WSe2 photodetectors with ultrahigh photoresponsivity. Nat Commun 2022;13:4372. https://doi.org/10.1038/s41467-022-32062-0.

[11]

Tang L, Tan J, Nong H, Liu B, Cheng H-M. Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc Mate Res 2020;2:36–47. https://doi.org/10.1021/accountsmr.0c00063.

[12]

Li Y, Fu J, Mao XY, Chen C, Liu H, Gong M, et al. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat Commun 2021;12:5896. https://doi.org/10.1038/s41467-021-26200-3.

[13]

Su WH, Zhang S, Liu C, Tian QL, Liu XQ, Li KL, et al. Interlayer transition induced infrared response in ReS2/2D perovskite van der Waals heterostructure photodetector. Nano Lett 2022;22:10192–9. https://doi.org/10.1021/acs.nanolett.2c04328.

[14]

Sun Y, Xie XS, Chen YZ, Sun B, Wang CX. Nanoscopic spotlight in a spindle semiconductor nanowire. ACS Nano 2019;13:772–9. https://doi.org/10.1021/acsnano.8b08147.

[15]

Gong C, Chu J, Qian S, Yin C, Hu X, Wang H, et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv Mater 2020;32:1908242. https://doi.org/10.1002/adma.201908242.

[16]

Chen JW, Li L, Gong PL, Zhang HL, Yin SQ, Li M, et al. A submicrosecond-response ultraviolet-visible-near-infrared broadband photodetector based on 2D tellurosilicate InSiTe3. ACS Nano 2022;16:7745–54. https://doi.org/10.1021/acsnano.1c11628.

[17]

Zhao T, Guo J, Li T, Wang Z, Peng M, Zhong F, et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem Soc Rev 2023. https://doi.org/10.1039/d2cs00657j.

[18]

Ye QJ, Lu JT, Zheng ZQ, Huang WJ, Yao JD, Yang GW. Pulsed-laser-deposition fabricated ZnIn2S4 photodetectors with excellent ON/OFF switching characteristics toward high-temperature-resistant photodetection applications. Adv Opt Mater 2022;10:2102335. https://doi.org/10.1002/adom.202102335.

[19]

Tan DZ, Zhang WJ, Wang XF, Koirala S, Miyauchi Y, Matsuda K. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance. Nanoscale 2017;9:12425–31. https://doi.org/10.1039/c7nr03040a.

[20]

Sun Y, Zhang J, Ye S, Song J, Qu J. Progress report on property, preparation, and application of Bi2O2Se. Adv Funct Mater 2020;30:2004480. https://doi.org/10.1002/adfm.202004480.

[21]

Wang F, Yang S, Wu J, Hu X, Li Y, Li H, et al. Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat 2021;3:1251–71. https://doi.org/10.1002/inf2.12215.

[22]

Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, et al. Ultrathin free-standing nanosheets of Bi2O2Se: room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett 2019;19:5703–9. https://doi.org/10.1021/acs.nanolett.9b02312.

[23]

Zou XB, Tian F, Liang HK, Li Y, Sun Y, Wang CX. Coexistence of anisotropic large magnetoresistance and ferroelectricity in two-dimensional narrow-bandgap Bi2O2Te. ACS Nano 2022;16:19543–50. https://doi.org/10.1021/acsnano.2c09997.

[24]

Zou XB, Liang HK, Li Y, Zou YC, Tian F, Sun Y, et al. 2D Bi2O2Te semiconductor with single-crystal native oxide layer. Adv Funct Mater 2023. https://doi.org/10.1002/adfm.202213807.

[25]

Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol 2017;12:530–4. https://doi.org/10.1038/nnano.2017.43.

[26]

Khan U, Tang L, Ding B, Yuting L, Feng S, Chen W, et al. Catalyst-free growth of atomically thin Bi2O2Se nanoribbons for high-performance electronics and optoelectronics. Adv Funct Mater 2021;31:2101170. https://doi.org/10.1002/adfm.202101170.

[27]

Fu Q, Zhu C, Zhao X, Wang X, Chaturvedi A, Zhu C, et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv Mater 2019;31:1804945. https://doi.org/10.1002/adma.201804945.

[28]

Hong C, Tao Y, Nie A, Zhang M, Wang N, Li R, et al. Inclined ultrathin Bi2O2Se films: a building block for functional van der Waals heterostructures. ACS Nano 2020;14:16803–12. https://doi.org/10.1021/acsnano.0c05300.

[29]

Zou XB, Sun Y, Wang CX. Horizontally self-standing growth of Bi2O2Se achieving optimal optoelectric properties. Small Methods 2022;6:2200347. https://doi.org/10.1002/smtd.202200347.

[30]

Chen YF, Ma WL, Tan CW, Luo M, Zhou W, Yao NJ, et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv Funct Mater 2021;31:2009554 https://doi.org/10.1002/10.1002/adfm.202009554.

[31]

Fang CC, Han JF, Yu M, Liu WL, Gao SM, Huang K. WS2/Bi2O2Se van der Waals heterostructure with straddling band configuration for high performances and broadband photodetector. Adv Mater Interfac 2022;9:2102091 https://doi.org/10.1002/10.1002/admi.202102091.

[32]

Li T, Tu T, Sun Y, Fu H, Yu J, Xing L, et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat Electron 2020;3(8):473–8. https://doi.org/10.1038/s41928-020-0444-6.

[33]

Tong T, Chen Y, Qin S, Li W, Zhang J, Zhu C, et al. Sensitive and ultrabroadband phototransistor based on two-dimensional Bi2O2Se nanosheets. Adv Funct Mater 2019;29:1905806. https://doi.org/10.1002/adfm.201905806.

[34]

Kang M, Chai H-J, Jeong HB, Park C, Jung I-y, Park E, et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal–organic chemical vapor deposition. ACS Nano 2021;15:8715–23. https://doi.org/10.1021/acsnano.1c00811.

[35]

Wu Z, Liu G, Wang Y, Yang X, Wei T, Wang Q, et al. Seed-induced vertical growth of 2D Bi2O2Se nanoplates by chemical vapor transport. Adv Funct Mater 2019;29:1906639. https://doi.org/10.1002/adfm.201906639.

[36]

Wu M, Zeng XC. Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett 2017;17:6309–14. https://doi.org/10.1021/acs.nanolett.7b03020.

[37]

Shi JP, Huan YH, Xiao MM, Hong M, Zhao XX, Gao YL, et al. Two-dimensional metallic NiTe2 with ultrahigh environmental stability, conductivity, and electrocatalytic activity. ACS Nano 2020;14:9011–20. https://doi.org/10.1021/acsnano.0c03940.

[38]

Fang HH, Hu WD. Photogating in low dimensional photodetectors. Adv Sci 2017;4:1700323. https://doi.org/10.1002/advs.201700323.

[39]

Zhao T, Zhong F, Wang S, Wang Y, Xu T, Chen Y, et al. Hydrogen-assisted synthesis of large-size 2D bismuth telluride flakes for broadband photodetection up to 2 μm. Adv Opt Mater 2022;11:2202208. https://doi.org/10.1002/adom.202202208.

[40]

Zhou X, Gan L, Tian WM, Zhang Q, Jin SY, Li HQ, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv Mater 2015;27:8035–41. https://doi.org/10.1002/adma.201503873.

[41]

Xu SP, Fu HX, Tian Y, Deng T, Cai J, Wu JX, et al. Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew Chem, Int Ed 2020;59:17938–43. https://doi.org/10.1002/anie.202006745.

[42]

Chen C, Wang MX, Wu JX, Fu HX, Yang HF, Tian Z, et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci Adv 2018;4:eaat8355. https://doi.org/10.1126/sciadv.aat8355.

[43]

Liu Y, Gorla CR, Liang S, Emanetoglu N, Lu Y, Shen H, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J Electron Mater 2000;29:69–74. https://doi.org/10.1007/s11664-000-0097-1.

[44]

Tak BR, Garg M, Dewan S, Torres-Castanedo CG, Li K-H, Gupta V, et al. High-temperature photocurrent mechanism of β-Ga2O3 based metal-semiconductor-metal solar-blind photodetectors. J Appl Phys 2019;125:144501. https://doi.org/10.1063/1.5088532.

[45]

Hou XH, Zhao XL, Zhang Y, Zhang ZF, Liu Y, Qin Y, et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv Mater 2022;34:2106923. https://doi.org/10.1002/adma.202106923.

[46]

Jiang J, Wen Y, Wang H, Yin L, Cheng RQ, Liu CS, et al. Recent advances in 2D materials for photodetectors. Adv Electron Mater 2021;7:2001125. https://doi.org/10.1002/aelm.202001125.

[47]

Wang FK, Li LG, Huang WJ, Li L, Jin B, Li HQ, et al. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv Funct Mater 2018;28:1802707. https://doi.org/10.1002/adfm.201802707.

[48]

Liu JL, Chen H, Li X, Wang H, Zhang ZK, Pan WW, et al. Ultra-fast and high flexibility near-infrared photodetectors based on Bi2Se3 nanobelts grown via catalyst-free van der Waals epitaxy. J Alloys Compd 2020;818:152819. https://doi.org/10.1016/j.jallcom.2019.152819.

[49]

Liu JL, Wang H, Li X, Chen H, Zhang ZK, Pan WW, et al. Ultrasensitive flexible near-infrared photodetectors based on Van der Waals Bi2Te3 nanoplates. Appl Surf Sci 2019;484:542–50. https://doi.org/10.1016/j.apsusc.2019.03.295.

[50]

Luo P, Pei K, Wang FK, Feng X, Li HQ, Liu XT, et al. Ultrathin 2D ternary Bi2Te2Se flakes for fast-response photodetectors with gate-tunable responsivity. Sci China Mater 2021;64(12):3017–26. https://doi.org/10.1007/s40843-021-1695-x.

[51]

Zhao M, Su JW, Zhao Y, Luo P, Wang FK, Han W, et al. Sodium-Mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Adv Funct Mater 2020;30:1909849. https://doi.org/10.1002/adfm.201909849.

[52]

Sorifi S, Moun M, Kaushik S, Singh R. High-temperature performance of a GaSe nanosheet-based broadband photodetector. ACS Appl Electron Mater 2020;2:670–6. https://doi.org/10.1021/acsaelm.9b00770.

[53]

Tsai DS, Liu KK, Lien DH, Tsai ML, Kang CF, Lin CA, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013;7:3905–11. https://doi.org/10.1021/nn305301b.

[54]

Li J, Wang ZX, Wen Y, Chu JW, Yin L, Cheng RQ, et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv Funct Mater 2018;28:1706437. https://doi.org/10.1002/adfm.201706437.

Journal of Materiomics
Pages 1024-1031
Cite this article:
Zou X, Wang R, Sun Y, et al. Two-dimensional Bi2O2Se nanosheets for sensitive and fast-response high-temperature photodetectors. Journal of Materiomics, 2023, 9(6): 1024-1031. https://doi.org/10.1016/j.jmat.2023.03.008

116

Views

4

Crossref

4

Web of Science

5

Scopus

Altmetrics

Received: 05 February 2023
Revised: 26 February 2023
Accepted: 23 March 2023
Published: 24 April 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return