AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fully depleted vdW heterojunction based high performance photovoltaic photodetector

Yonghong ZengaFanxu Menga,gSidi FanaPengfei WangaCuiyun KoubMingyi SunaHaiguo Hua,bRui CaoaSwelm WagehcOmar A. Al-HartomycAbul KalamdBowen DuaWenchao DingeSongrui WeiaZhinan Guob( )Qiuliang Wanga,fHan Zhanga( )
College of Physics and Optoelectronic Engineering, Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, Shenzhen University, Shenzhen, 518060, China
Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
Research Center for Advanced Materials Science (RCAMS), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
Foshan Electrical and Lighting Co., LTD, 64 North Fenjiang Road, Foshan, China
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, 132022, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Van der Waals (vdW) heterojunctions, with their unique electronic and optoelectronic properties, have become promising candidates for photodetector applications. Amplifying the contribution of the depletion region in vdW heterojunction, which would enhance both of the collection efficiency and speed of the photogenerated carriers, presents an effective strategy for achieving high performance vdW heterojunction photodetectors. Herein, a fully depleted vdW heterojunction photodetector is built on two-dimensional (2D) semiconductor materials (GaTe and InSe) layered on a pattered bottom electrode in vertical structure, in which the generation and motion of carriers are exclusively achieved in the depletion region. Attributed to the intrinsic built-in electric field, the elimination of series resistance and the depletion region confinement of carriers, the as-fabricated photodetector exhibits prominent photovoltaic properties with a high open-circuit voltage of 0.465 V, as well as photoresponse characteristics with outstanding responsivity, detectivity and photoresponse speed of 63.7 A/W, 3.88 × 1013 Jones, and 32.7 μs respectively. The overall performance of this fully depleted GaTe/InSe vdW heterojunctions photodetectors are ranking high among the top level of 2D materials based photodetectors. It indicates the device architecture can provide new opportunities for the fabrication of high-performance photodetectors.

References

[1]

Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013;499:419–25.

[2]

Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science 2016;353:6298.

[3]

Hou HL, Anichini C, Samorì P, Criado A, Prato M. 2D van der Waals heterostructures for chemical sensing. Adv Funct Mater 2022;32:2207065.

[4]

Dong HJ, Hong SH, Zhang PF, Yu SY, Wang Y, Yuan SQ, et al. Metal-free Z-scheme 2D/2D VdW heterojunction for high-efficiency and durable photocatalytic H2 production. Chem Eng J 2020;395:125150.

[5]

Cheng SS, Su N, Zhang PF, Fang YH, Wang JL, Zhou XT, et al. Coupling effect of (SCN)x nanoribbons on PCN nanosheets in the metal-free 2D/1D Van der Waals heterojunction for boosting photocatalytic hydrogen evolution from water splitting. Sep Purif Technol 2023;307:122796.

[6]

Neupane GP, Zhang L, Yildirim T, Zhou K, Wang B, Tang Y, et al. A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures. Nano Res 2020;13:1–17.

[7]

Bian RJ, Li CC, Liu Q, Cao GM, Fu QD, Meng P, et al. Recent progress in the synthesis of novel two-dimensional van der Waals materials. Natl Sci Rev 2022;9:nwab164.

[8]

Zhang JR, Song XF, Wang L, Huang W. Ultrathin two-dimensional hybrid perovskites toward flexible electronics and optoelectronics. Natl Sci Rev 2022;9:nwab129.

[9]

Huang H, Jiang B, Zou XM, Zhao XZ, Liao L. Black phosphorus electronics. Sci Bull 2019;64:1067–79.

[10]

Mudd GW, Svatek SA, Hague L, Makarovsky O, Kudrynskyi ZR, Mellor CJ, et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv Mater 2015;27:3760–6.

[11]

Huang M, Li S, Zhang Z, Xiong X, Li X, Wu Y. Multifunctional high-performance van der Waals heterostructures. Nat Nanotechnol 2017;12:1148–54.

[12]

Gao A, Lai J, Wang Y, Zhu Z, Zeng J, Yu G, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol 2019;14:217–22.

[13]

Chen J, Ouyang W, Yang W, He J-H, Fang X. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv Funct Mater 2020;30:1909909.

[14]

Chen WJ, Liang RR, Wang J, Zhang SQ, Xu J. Enhanced photoresponsivity and hole mobility of MoTe2 phototransistors by using an Al2O3 high-kappa gate dielectric. Sci Bull 2018;63:997–1005.

[15]

Tong L, Peng M, Wu PS, Huang XY, Li Z, Peng ZR, et al. Hole-dominated Fowler-Nordheim tunneling in 2D heterojunctions for infrared imaging. Sci Bull 2021;66:139–46.

[16]

Wang H, Gao S, Zhang F, Meng F, Guo Z, Cao R, et al. Repression of interlayer recombination by graphene generates a sensitive nanostructured 2D vdW heterostructure based photodetector. Adv Sci 2021;8:2100503.

[17]

Dai M, Chen H, Wang F, Long M, Shang H, Hu Y, et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 2020;14:9098–106.

[18]

Wang F, Liu Z, Zhang T, Long M, Wang X, Xie R, et al. Fully depleted self-aligned heterosandwiched van der Waals photodetectors. Adv Mater 2022;34:2203283.

[19]

Yang SX, Wang C, Ataca C, Li Y, Chen H, Cai H, et al. Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p-n vdW heterostructure. ACS Appl Mater Interfaces 2016;8:2533–9.

[20]

Bandurin DA, Tyurnina AV, Yu GL, Mishchenko A, Zolyomi V, Morozov SV, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol 2017;12:223–7.

[21]

Zhao Q, Wang T, Miao Y, Ma F, Xie Y, Ma X, et al. Thickness-induced structural phase transformation of layered gallium telluride. Phys Chem Chem Phys 2016;18:18719–26.

[22]

Yu YW, Ran M, Zhou SS, Wang RY, Zhou FY, Li HQ, et al. Phase-engineered synthesis of ultrathin hexagonal and monoclinic GaTe flakes and phase transition study. Adv Funct Mater 2019;29:1901012.

[23]

Guo Z, Cao R, Wang H, Zhang X, Meng F, Chen X, et al. High performance polarization sensitive photodetectors on two-dimensional β-InSe. Natl Sci Rev 2022;9:nwab098.

[24]

Tamalampudi SR, Lu YY, Kumar RU, Sankar R, Liao CD, Moorthy KB, et al. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett 2014;14:2800–6.

[25]

Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 2013;8:235–46.

[26]

Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 2008;3:563–8.

[27]

Kim JS, Lägel B, Moons E, Johansson N, Baikie ID, Salaneck WR, et al. Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison. Synth Met 2000;111–112:311–4.

[28]

Qi T, Gong Y, Li A, Ma X, Wang P, Huang R, et al. Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors. Adv Funct Mater 2020;30:1905687.

[29]

Feng W, Jin Z, Yuan J, Zhang J, Jia S, Dong L, et al. A fast and zero-biased photodetector based on GaTe-InSe vertical 2D p-n heterojunction. 2D Mater 2018;5:025008.

[30]

Srivastava PK, Hassan Y, Gebredingle Y, Jung J, Kang B, Yoo WJ, et al. Multifunctional van der Waals broken-gap heterojunction. Small 2019;15:1804885.

[31]

Al-Abbas SSA, Muhsin MK, Jappor HR. Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors. Chem Phys Lett 2018;713:46–51.

[32]

Qasrawi AF. Temperature dependence of the band gap, refractive index and single-oscillator parameters of amorphous indium selenide thin films. Opt Mater 2007;29:1751–5.

[33]

Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nanotechnol 2014;9:262–7.

[34]

Wang F, Wang ZX, Xu K, Wang FM, Wang QS, Huang Y, et al. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett 2015;15:7558–66.

[35]

Yu Y, Zhang YT, Zhang Z, Zhang HT, Song XX, Cao MX, et al. Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction. J Phys Chem Lett 2017;8:445–51.

[36]

Hu X, Zhang XD, Liang L, Bao J, Li S, Yang WL, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater 2014;24:7373–80.

[37]

Wang P, Liu SS, Luo WJ, Fang HH, Gong F, Guo N, et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv Mater 2017;29:1604439.

[38]

Lee HS, Ahn J, Shim W, Im S, Hwang DK. 2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection. Appl Phys Lett 2018;113:163102.

[39]

Zhang J, Cong L, Zhang K, Jin X, Li XZ, Wei Y, et al. Mixed-dimensional vertical point p-n junctions. ACS Nano 2020;14:3181–9.

[40]

Zubair M, Zhu CG, Sun XX, Liu HW, Zheng BY, Yi JL, et al. Record high photoresponse observed in CdS-black phosphorous van der Waals heterojunction photodiode. Sci China Math 2020;63:1570–8.

[41]

Wu WH, Zhang Q, Zhou X, Li L, Su JW, Wang FK, et al. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 2018;51:45–53.

[42]

Wu EX, Xie Y, Liu QZ, Hu XD, Liu J, Zhang DH, et al. Photoinduced doping to enable tunable and high-performance anti-ambipolar MoTe2/MoS2 heterotransistors. ACS Nano 2019;13:5430–8.

[43]

Lin P, Yang JK. Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics. J Alloys Compd 2020;842:155890.

[44]

Wu F, Li Q, Wang P, Xia H, Wang Z, Wang Y, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun 2019;10:4663.

[45]

Pezeshki A, Hossein S, Shokouh H, Nazari T, Oh K, Im S. Electric and photovoltaic behavior of a few-layer alpha-MoTe2/MoS2 dichalcogenide heterojunction. Adv Mater 2016;28:3216–22.

[46]

Pi L, Wang P, Liang SJ, Luo P, Wang H, Li D, et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat Electron 2022;5:248–54.

[47]

Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat Electron 2021;4:357–63.

Journal of Materiomics
Pages 1039-1047
Cite this article:
Zeng Y, Meng F, Fan S, et al. Fully depleted vdW heterojunction based high performance photovoltaic photodetector. Journal of Materiomics, 2023, 9(6): 1039-1047. https://doi.org/10.1016/j.jmat.2023.04.001

156

Views

7

Crossref

9

Web of Science

10

Scopus

Altmetrics

Received: 15 February 2023
Revised: 30 March 2023
Accepted: 04 April 2023
Published: 04 May 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return