AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Theoretical screening, intrinsic brittleness and thermal properties of the S-containing MAX carbides and borides

Zhiyao LuXiaodong HeHang YinJinze ZhangGuangping SongYongting ZhengYuelei Bai,( )
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments and Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150080, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

To respond the recent experimental advances, the phase stability, mechanical properties, phonon as well as infrared- and Raman-active modes, thermal expansion and heat capacity were investigated by density functional theory for the S-containing MAX carbides and borides (M from Ⅲ B to Ⅷ B), of importance, well consistent with the available experimental results. After examining the thermodynamic competition with all the competing phases and intrinsic stability by their lattice dynamics, 18 MAX phases were screened out from 138 ones. Using the “bond stiffness” model as well as the associated criterion for damage tolerance and fracture toughness, the ratio of bond stiffness of weakest M−S to the strongest M-X bonds (kmin/kmax) over 1/2 indicates their intrinsic brittleness of all S-containing MAX phases except Nb4SC3. Including the contributions from phonon and electrons, their linear thermal expansion coefficients [(8.1–13.6)×10−6 K−1, 300–1,300 K] and heat capacities (Cp) as a function of temperature are predicted. Of much interest, a well-established relationship between molar Cp of the MAX and MX phases is theoretically deduced in the present work.

References

[1]

Liu H, Du B, Chu Y. Synthesis of the ternary metal carbide solid-solution ceramics by polymer-derived-ceramic route. J Am Ceram Soc 2020;103:2970–4. https://doi.org/10.1111/jace.16993.

[2]

Jayaseelan DD, Zapata-Solvas E, Brown P, Lee WE. In situ formation of oxidation resistant refractory coatings on SiC-reinforced ZrB2 ultra high temperature ceramics. J Am Ceram Soc 2012;95:1247–54. https://doi.org/10.1111/j.1551-2916.2011.05032.x.

[3]

Fan Y, Lai M, Zhao J, Yao Y, Yang L, Liu Y, et al. Theoretical investigation of formation and diffusion mechanisms for point defects in ytterbium and lutetium silicates. J Am Ceram Soc 2022;105:653–67. https://doi.org/10.1111/jace.18069.

[4]

Bai Y, Qi X, Duff A, Li N, Kong F, He X, et al. Density functional theory insights into ternary layered boride MoAlB. Acta Mater 2017;132:69–81. https://doi.org/10.1016/j.actamat.2017.04.031.

[5]

Qi X, Yin W, Jin S, Zhou A, He X, Song G, et al. Density-functional-theory predictions of mechanical behaviour and thermal properties as well as experimental hardness of the Ga-bilayer Mo2Ga2C. J Adv Ceram 2022;11:273–82. https://doi.org/10.1007/s40145-021-0531-9.

[6]

Bai Y, Srikanth N, Chua CK, Zhou K. Density functional theory study of Mn+1AXn phases: a review. Crit Rev Solid State Mater Sci 2019;44:56–107. https://doi.org/10.1080/10408436.2017.1370577.

[7]

Ade M, Hillebrecht H. Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg Chem 2015;54:6122–35. https://doi.org/10.1021/acs.inorgchem.5b00049.

[8]

Xu L, Shi O, Liu C, Zhu D, Grasso S, Hu C. Synthesis, microstructure and properties of MoAlB ceramics. Ceram Int 2018;44:13396–401. https://doi.org/10.1016/j.ceramint.2018.04.177.

[9]

Zhang W, Li S, Wu S, Yao B, Fan S, Bei G, et al. Synthesis and properties of MoAlB composites reinforced with SiC particles. J Adv Ceram 2022;11:495–503. https://doi.org/10.1007/s40145-021-0543-5.

[10]

Bai Y, Sun D, Li N, Kong F, Qi X, He X, et al. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2. Int J Refract Metals Hard Mater 2019;80:151–60. https://doi.org/10.1016/j.ijrmhm.2019.01.010.

[11]

Li N, Bai Y, Wang S, Zheng Y, Kong F, Qi X, et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders. J Am Ceram Soc 2017;100:4407–11. https://doi.org/10.1111/jace.15058.

[12]

He X, Bai Y, Li Y, Zhu C, Li M. Ab initio calculations for properties of MAX phases Ti2InC, Zr2InC, and Hf2InC. Solid State Commun 2009;149:564–6. https://doi.org/10.1016/j.ssc.2008.12.047.

[13]

Lorenz M, Travitzky N, Rambo CR. Effect of processing parameters on in situ screen printing-assisted synthesis and electrical properties of Ti3SiC2-based structures. J Adv Ceram 2021;10:129–38. https://doi.org/10.1007/s40145-020-0427-0.

[14]

Wang Junjie, Ye T, Gong Y, Wu J, Miao N, Tada T, et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat Commun 2019;10:2284. https://doi.org/10.1038/s41467-019-10297-8.

[15]

Qi X, He X, Yin W, Song G, Zheng Y, Bai Y. Stability trend, weak bonding, and magnetic properties of the Al- and Si-containing ternary-layered borides MAB phases. J Am Ceram Soc 2022. https://doi.org/10.1111/jace.18819.

[16]

Rackl T, Eisenburger L, Niklaus R, Johrendt D. Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x(x=0–1). Phys Rev Materials 2019;3:054001. https://doi.org/10.1103/PhysRevMaterials.3.054001.

[17]

Rackl T, Johrendt D. The MAX phase borides Zr2SB and Hf2SB. Solid State Sci 2020;106:106316. https://doi.org/10.1016/j.solidstatesciences.2020.106316.

[18]

Qin Y, Zhou Y, Fan L, Feng Q, Grasso S, Hu C. Synthesis and characterization of ternary layered Nb2SB ceramics fabricated by spark plasma sintering. J Alloys Compd 2021;878:160344. https://doi.org/10.1016/j.jallcom.2021.160344.

[19]

Zhang Q, Fu S, Wan D, Bao Y, Feng Q, Grasso S, et al. Synthesis and property characterization of ternary laminar Zr2SB ceramic. J Adv Ceram 2021;11:825–33. https://doi.org/10.21203/rs.3.rs-982056/v1.

[20]

Bai Y, He X, Li Y, Zhu C, Zhang S. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo–hot isostatic pressing process. J Mater Res 2009;24:2528–35. https://doi.org/10.1557/jmr.2009.0327.

[21]

Wang W, Li C, Zhai H, Wang C. Preparation of high-strength Ti3AlC2 by spark plasma sintering. Int J Appl Ceram Technol 2015;12:E126-31. https://doi.org/10.1111/ijac.12254.

[22]

Bai Y, He X. An ab initio study on compressibility of Al-containing MAX-phase carbides. J Appl Phys 2013;114:173709. https://doi.org/10.1063/1.4829282.

[23]

Li S, Song G, Kwakernaak K, van der Zwaag S, Sloof WG. Multiple crack healing of a Ti2AlC ceramic. J Eur Ceram Soc 2012;32:1813–20. https://doi.org/10.1016/j.jeurceramsoc.2012.01.017.

[24]

Wan DT, Meng FL, Zhou YC, Bao YW, Chen JX. Effect of grain size, notch width, and testing temperature on the fracture toughness of Ti3Si(Al)C2 and Ti3AlC2 using the chevron-notched beam (CNB) method. J Eur Ceram Soc 2008;28:663–9. https://doi.org/10.1016/j.jeurceramsoc.2007.07.011.

[25]

Hu C, He L, Zhang J, Bao Y, Wang J, Li M, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method. J Eur Ceram Soc 2008;28:1679–85. https://doi.org/10.1016/j.jeurceramsoc.2007.10.006.

[26]

Amini S, Barsoum MW, El-Raghy T. Synthesis and mechanical properties of fully dense Ti2SC. J Am Ceram Soc 2007;90:3953–8. https://doi.org/10.1111/j.1551-2916.2007.01999.x.

[27]

Bai Y, Qi X, He X, Song G, Zheng Y, Hao B, et al. Experimental and DFT insights into elastic, magnetic, electrical, and thermodynamic properties of MAB-phase Fe2AlB2. J Am Ceram Soc 2020;103:5837–51. https://doi.org/10.1111/jace.17205.

[28]

Dahlqvist M, Alling B, Rosén J. Stability trends of MAX phases from first principles. Phys Rev B 2010;81:220102. https://doi.org/10.1103/PhysRevB.81.220102.

[29]

Bai Y, Duff A, Jayaseelan DD, Wang R, He X, Lee WE. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides. J Am Ceram Soc 2016;99:3449–57. https://doi.org/10.1111/jace.14361.

[30]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169–86. https://doi.org/10.1103/PhysRevB.54.11169.

[31]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8. https://doi.org/10.1103/PhysRevLett.77.3865.

[32]

Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater 2015;108:1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021.

[33]

Wang V, Xu N, Liu J, Tang G, Geng W. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 2021;267:108033. https://doi.org/10.1016/j.cpc.2021.108033.

[34]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44:1272–6. https://doi.org/10.1107/S0021889811038970.

[35]

Kroumova E, Aroyo MI, Perez-Mato JM, Kirov A, Capillas C, Ivantchev S, et al. Bilbao crystallographic server : useful databases and tools for phase-transition studies. Phase Transitions 2003;76:155–70. https://doi.org/10.1080/0141159031000076110.

[36]

Bai Y, Qi X, He X, Sun D, Kong F, Zheng Y, et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr2AlB2, Cr3AlB4, and Cr4AlB6. J Am Ceram Soc 2019;102:3715–27. https://doi.org/10.1111/jace.16206.

[37]

Sakamaki K, Wada H, Nozaki H, Ōnuki Y, Kawai M. Carbosulfide superconductor. Solid State Commun 1999;112:323–27. https://doi.org/10.1016/S0038-1098(99)00359-2.

[38]

Khazaei M, Wang J, Estili M, Ranjbar A, Suehara S, Arai M, et al. Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale 2019;11:11305–14. https://doi.org/10.1039/C9NR01267B.

[39]

Carlsson A, Rosen J, Dahlqvist M. Theoretical predictions of phase stability for orthorhombic and hexagonal ternary MAB phases. Phys Chem Chem Phys 2022;24:11249–58. https://doi.org/10.1039/D1CP05750B.

[40]

Hug G. Electronic structures of and composition gaps among the ternary carbides Ti2MC. Phys Rev B 2006;74:184113. https://doi.org/10.1103/PhysRevB.74.184113.

[41]

Cui S, Feng W, Hu H, Feng Z, Liu H. Hexagonal Ti2SC with high hardness and brittleness: a first-principles study. Scripta Mater 2009;61:576–9. https://doi.org/10.1016/j.scriptamat.2009.05.026.

[42]
Barsoum Michel W. MAX phases : properties of machinable ternary carbides and nitrides. Weinheim: Wiley-VCH; 2013. Print ISBN:9783527330119, Online ISBN:9783527654581, https://doi.org/10.1002/9783527654581.
[43]

He X, Bai Y, Zhu C, Sun Y, Li M, Barsoum MW. General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M=transition metal): a first-principle study. Comput Mater Sci 2010;49:691–8. https://doi.org/10.1016/j.commatsci.2010.06.012.

[44]

Kulkarni SR, Merlini M, Phatak N, Saxena SK, Artioli G, Amini S, et al. Thermal expansion and stability of Ti2SC in air and inert atmospheres. J Alloys Compd 2009;469:395–400. https://doi.org/10.1016/j.jallcom.2008.01.150.

[45]

Opeka M, Zaykoski J, Talmy I, Causey S. Synthesis and characterization of Zr2SC ceramics. Mater Sci Eng, A 2011;528:1994–2001. https://doi.org/10.1016/j.msea.2010.10.084.

[46]
Wang X, Chen K, Wu E, Zhang Y, Ding H, Qiu N, et al. Synthesis and thermal expansion of chalcogenide MAX phase Hf2SeC. J Eur Ceram Soc 2022;42. https://doi.org/10.1016/j.jeurceramsoc.2021.12.062. 2084–8.
[47]

Lane NJ, Vogel SC, Caspi EN, Barsoum MW. High-temperature neutron diffraction and first-principles study of temperature-dependent crystal structures and atomic vibrations in Ti3AlC2, Ti2AlC, and Ti5Al2C3. J Appl Phys 2013;113:183519. https://doi.org/10.1063/1.4803700.

[48]

Scabarozi TH, Amini S, Leaffer O, Ganguly A, Gupta S, Tambussi W, et al. Thermal expansion of select Mn+1AXn (M=early transition metal, A=A group element, X=C or N) phases measured by high temperature X-Ray diffraction and dilatometry. J Appl Phys 2009;105:013543. https://doi.org/10.1063/1.3021465.

[49]

Barsoum MW, Rawn CJ, El-Raghy T, Procopio AT, Porter WD, Wang H, et al. Thermal properties of Ti4AlN3. J Appl Phys 2000;87:8407–14. https://doi.org/10.1063/1.373555.

[50]

Zhang W, Travitzky N, Hu C, Zhou Y, Greil P. Reactive hot pressing and properties of Nb2AlC. J Am Ceram Soc 2009;92:2396–9. https://doi.org/10.1111/j.1551-2916.2009.03187.x.

[51]

Hu C, Li F, He L, Liu M, Zhang J, Wang J, et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J Am Ceram Soc 2008;91:2258–63. https://doi.org/10.1111/j.1551-2916.2008.02424.x.

[52]

Sâad Essaoud S, Jbara AS. Electronic-structural, thermo-electric, and thermo-mechanical properties of M2AC and M2AB (M = Nb or Mo, A = Al or Ga) compounds. Indian J Phys 2023;97:105–14. https://doi.org/10.1007/s12648-022-02386-0.

[53]

Ding AL, Yu WB, Li CM, Chen ZQ. Thermodynamic properties of Nb4AlC3. Appl Mech Mater 2014;456:442–6. https://doi.org/10.4028/www.scientific.net/AMM.456.442.

[54]

Hurst JE, Keith Harrison B. Estimation of liquid and solid heat capacities using a modified KOPP’S rule. Chem Eng Commun 1992;112:21–30. https://doi.org/10.1080/00986449208935989.

[55]
Kulkarni SR, Vennila RS, Phatak NA, Saxena SK, Zha CS, El-Raghy T, et al. Study of Ti2SC under compression up to 47GPa. J Alloys Compd 2008;448. https://doi.org/10.1016/j.jallcom.2006.10.086. L1–4.
[56]

Kulkarni SR, Phatak NA, Saxena SK, Fei Y, Hu J. High pressure structural behavior and synthesis of Zr2SC. J Phys Condens Matter 2008;20:135211. https://doi.org/10.1088/0953-8984/20/13/135211.

[57]

Fu HZ, Teng M, Liu WF, Ma Y, Gao T. The axial compressibility, thermal expansion and elastic anisotropy of Hf2SC under pressure. Eur Phys J B 2010;78:37–42. https://doi.org/10.1140/epjb/e2010-10332-5.

[58]

Scabarozi TH, Amini S, Finkel P, Leaffer OD, Spanier JE, Barsoum MW, et al. Electrical, thermal, and elastic properties of the MAX -phase Ti2SC. J Appl Phys 2008;104:033502. https://doi.org/10.1063/1.2959738.

Journal of Materiomics
Pages 1056-1066
Cite this article:
Lu Z, He X, Yin H, et al. Theoretical screening, intrinsic brittleness and thermal properties of the S-containing MAX carbides and borides. Journal of Materiomics, 2023, 9(6): 1056-1066. https://doi.org/10.1016/j.jmat.2023.04.005

76

Views

3

Crossref

3

Web of Science

5

Scopus

Altmetrics

Received: 28 February 2023
Revised: 10 April 2023
Accepted: 11 April 2023
Published: 13 May 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return