AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Acceptor doping and actuation mechanisms in Sr-doped BiFeO3–BaTiO3 ceramics

Ziqi YangaYizhe LiaBing WangaJuncheng PanaAnnette K. KleppebDavid A. Halla,( )
Department of Materials, University of Manchester, M13 9PL, Manchester, UK
Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE, Didcot, UK

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

BiFeO3-BaTiO3 (BF-BT) ceramics are important multiferroic materials, which are attracting significant attention for potential applications in high temperature lead-free piezoelectric transducers. In the present study, the effects of Sr2+ as an acceptor dopant for Bi3+, in the range from 0 to 1.0% (in mole), on the structure and ferroelectric/piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 ceramics were evaluated. The use of a post-sintering Ar annealing process was found to be an effective approach to reduce electrical conductivity induced by the presence of electron holes associated with reoxidation during cooling. A low Sr dopant concentration (0.3%, in mole) yielded enhanced ferroelectric (Pmax ~ 0.37 C/m2, Pr ~ 0.30 C/m2) and piezoelectric (d33 ~ 178 pC/N, kp ~ 0.27) properties, whereas higher levels led to chemically heterogeneous core-shell structures and secondary phases with an associated decline in performance. The electric field-induced strain of the Sr-doped BF-BT ceramics was investigated using a combination of digital image correlation macroscopic strain measurements and in-situ synchrotron X-ray diffraction. Quantification of the intrinsic (lattice strain) and extrinsic (domain switching) contributions to the electric field induced strain indicated that the intrinsic contribution dominated during the poling process.

References

[1]

Neaton J, Ederer C, Waghmare U, Spaldin N, Rabe K. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 2005;71(1):014113.

[2]

Lebeugle D, Colson D, Forget A, Viret M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett 2007;91(2):022907.

[3]

Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater 2009;21(24):2463–85.

[4]

Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 2015;35(6):1659–81.

[5]

Rödel J, Jo W, Seifert KT, Anton EM, Granzow T, Damjanovic D. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 2009;92(6):1153–77.

[6]

Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son JS, Ahn CW, Jo W. Lead-free piezoceramics–Where to move on? Journal of Materiomics 2016;2(1):1–24.

[7]

Leontsev SO, Eitel RE. Origin and magnitude of the large piezoelectric response in the lead-free (1–x)BiFeO3xBaTiO3 solid solution. J Mater Res 2011;26(1):9–17.

[8]

Hoffmann M, Hammer M, Endriss A, Lupascu D. Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Mater 2001;49(7):1301–10.

[9]

Amorín H, Correas C, Ramos P, Hungría T, Castro A, Algueró M. Very high remnant polarization and phase-change electromechanical response of BiFeO3-PbTiO3 at the multiferroic morphotropic phase boundary. Appl Phys Lett 2012;101(17):172908.

[10]

Schrade M, Masó N, Perejón A, Pérez-Maqueda LA, West AR. Defect chemistry and electrical properties of BiFeO3. J Mater Chem C 2017;5(38):10077–86.

[11]

Liu G, Zhang S, Jiang W, Cao W. Losses in ferroelectric materials. Mater Sci Eng R Rep 2015;89:1–48.

[12]

Calisir I, Hall DA. Chemical heterogeneity and approaches to its control in BiFeO3–BaTiO3 lead-free ferroelectrics. J Mater Chem C 2018;6(1):134–46.

[13]

Radojković A, Golić DL, Ćirković J, Stanojević ZM, Pajić D, Torić F, Dapčević A, Vulić P, Branković Z, Branković G. Tuning of BiFeO3 multiferroic properties by light doping with Nb. Ceram Int 2018;44(14):16739–44.

[14]

Calisir I, Amirov AA, Kleppe AK, Hall DA. Optimisation of functional properties in lead-free BiFeO3–BaTiO3 ceramics through La3+ substitution strategy. J Mater Chem 2018;6(13):5378–97.

[15]

Wang B, Li Y, Hall DA. Surface structure and quenching effects in BiFeO3-BaTiO3 ceramics. J Am Ceram Soc 2022;105(2):1265–75.

[16]

Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, Kim WJ, Do D, Jeong IK. High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 2015;27(43):6976–82.

[17]

Morozov MI, Einarsrud M-A, Grande T. Control of conductivity and electric field induced strain in bulk Bi0.5K0.5TiO3–BiFeO3 ceramics. Appl Phys Lett 2014;104(12):122905.

[18]

Maso N, West AR. Electrical properties of Ca-doped BiFeO3 ceramics: from p-type semiconduction to oxide-ion conduction. Chem Mater 2012;24(11):2127–32.

[19]

Morozov MI, Einarsrud M-A, Grande T. Atmosphere controlled conductivity and Maxwell-Wagner relaxation in Bi0.5K0.5TiO3—BiFeO3 ceramics. J Appl Phys 2014;115(4):044104.

[20]

Berlincourt D. Piezoelectric ceramic compositional development. J Acoust Soc Am 1992;91(5):3034–40.

[21]
Heywang W, Lubitz K, Wersing W. Piezoelectricity: evolution and future of a technology. Springer Science & Business Media; 2008.
[22]

Kalem V, Cam I, Timuçin M. Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceram Int 2011;37(4):1265–75.

[23]

Eitssayeam S, Rujijanagul G. Electrical properties and phase transition behaviors of Sr-doped 0.8PZT–0.2PNN ceramics. Curr Appl Phys 2008;8(3–4):328–31.

[24]

Bedoya C, Muller C, Baudour J-L, Madigou V, Anne M, Roubin M. Sr-doped PbZr1−xTixO3 ceramic: structural study and field-induced reorientation of ferroelectric domains. Mater Sci Eng, B 2000;75(1):43–52.

[25]

Hussain T, Siddiqi SA, Atiq S, Awan M. Induced modifications in the properties of Sr doped BiFeO3 multiferroics. Prog Nat Sci: Mater Int 2013;23(5):487–92.

[26]

Hussain S, Hasanain S, Jaffari GH, Ali NZ, Siddique M, Shah SI. Correlation between structure, oxygen content and the multiferroic properties of Sr doped BiFeO3. J Alloys Compd 2015;622:8–16.

[27]

Reetu A, Sanghi S. Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. J Appl Phys 2011;110(7). 073909-073909-073906.

[28]

Sharma N, Kumar S, Mall AK, Gupta R, Garg A. Sr and Mn co-doped sol-gel derived BiFeO3 ceramics with enhanced magnetism and reduced leakage current. Mater Res Express 2017;4(1):015702.

[29]

Kang F, Zhang L, Huang B, Mao P, Wang Z, Sun Q, Wang J, Hu D. Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design. J Eur Ceram Soc 2020;40(4):1198–204.

[30]

Lu Z, Wang G, Li L, Huang Y, Feteira A, Bao W, Kleppe AK, Xu F, Wang D, Reaney IM. In situ poling X-ray diffraction studies of lead-free BiFeO3–SrTiO3 ceramics. Materials Today Physics 2021;19:100426.

[31]

Zhao C, Hou D, Chung C-C, Zhou H, Kynast A, Hennig E, et al. Deconvolved intrinsic and extrinsic contributions to electrostrain in high performance, Nb-doped Pb(ZrTi)O3 piezoceramics (0.50≤x≤0.56). Acta Mater 2018;158:369–80.

[32]

Jones JL, Hoffman M, Daniels JE, Studer AJ. Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl Phys Lett 2006;89(9):092901.

[33]

Pramanick A, Damjanovic D, Daniels JE, Nino JC, Jones JL. Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J Am Ceram Soc 2011;94(2):293–309.

[34]

Chung CC, Fancher CM, Isaac C, Nikkel J, Hennig E, Jones JL. Temperature dependence of field-responsive mechanisms in lead zirconate titanate. J Am Ceram Soc 2017;100(9):4352–61.

[35]

Randall CA, Kim N, Kucera JP, Cao W, Shrout TR. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc 1998;81(3):677–88.

[36]

Khansur NH, Rojac T, Damjanovic D, Reinhard C, Webber KG, Kimpton JA, Daniels JE. Electric-field-induced domain switching and domain texture relaxations in bulk bismuth ferrite. J Am Ceram Soc 2015;98(12):3884–90.

[37]

Li Y, Chen Y, Zhang Z, Kleppe A, Hall DA. In-situ XRD study of actuation mechanisms in BiFeO3-K0.5Bi0.5TiO3-PbTiO3 ceramics. Acta Mater 2019;168:411–25.

[38]

Lee MH, Song TK. Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics. J Eur Ceram Soc 2019;39(15):4697–704.

[39]

Li Y, Zhang Z, Chen Y, Hall DA. Electric field-induced strain in core-shell structured BiFeO3-K0.5Bi0.5TiO3-PbTiO3 ceramics. Acta Mater 2018;160:199–210.

[40]

Filik J, Ashton A, Chang P, Chater P, Day S, Drakopoulos M, Gerring M, Hart M, Magdysyuk O, Michalik S. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2. J Appl Crystallogr 2017;50(3):959–66.

[41]

Stewart M, Cain MG, Hall DA. Ferroelectric hysteresis measurement and analysis. NPL [Rep.] CMMT(A) 1999;152:1–57.

[42]
Fujishima S, Merlina J, Miyazaki J. Piezoelectric ceramic resonators and filters, 38th annual symposium on frequency control. IEEE; 1984. p. 184–9.
[43]

Trujillo S, Kreisel J, Jiang Q, Smith J, Thomas PA, Bouvier P, Weiss F. The high-pressure behaviour of Ba-doped Na1/2Bi1/2TiO3 investigated by Raman spectroscopy. J Phys Condens Matter 2005;17(41):6587.

[44]

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr 1976;32(5):751–67.

[45]

Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park S-E. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3–PbTiO3 ceramics. Jpn J Appl Phys 2001;40(10R):5999.

[46]

Makarovic M, Bencan A, Walker J, Malic B, Rojac T. Processing, piezoelectric and ferroelectric properties of (x)BiFeO3-(1-x)SrTiO3 ceramics. J Eur Ceram Soc 2019;39(13):3693–702.

[47]

Venkataraman LK, Wang B, Ren P, Hall DA, Rojac T. Quenching effects and mechanisms in bismuth-based perovskite ferroelectrics. Open Ceramics 2022:100259.

[48]

Raymond M, Smyth D. Defects and charge transport in perovskite ferroelectrics. J Phys Chem Solid 1996;57(10):1507–11.

[49]

Shi T, Chen Y, Guo X. Defect chemistry of alkaline earth metal (Sr/Ba) titanates. Prog Mater Sci 2016;80:77–132.

[50]

Li L, Kler J, West AR, De Souza RA, Sinclair DC. High oxide-ion conductivity in acceptor-doped Bi-based perovskites at modest doping levels. Phys Chem Chem Phys 2021;23(19):11327–33.

[51]

Golubeva OY, Semenov V, Volodin V, Gusarov V. Structural stabilization of Fe4+ Ions in perovskite-like phases based on the BiFeO3-SrFeOy system. Glass Phys Chem 2009;35(3):313–9.

[52]

Yang Z, Wang B, Li Y, Hall DA. Enhancement of nonlinear dielectric properties in BiFeO3–BaTiO3 ceramics by Nb-doping. Materials 2022;15(8):2872.

[53]

Murakami S, Ahmed NTAF, Wang D, Feteira A, Sinclair DC, Reaney IM. Optimising dopants and properties in BiMeO3 (Me= Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J Eur Ceram Soc 2018;38(12):4220–31.

[54]

Yang Z, Wang B, Brown T, Milne SJ, Feteira A, Wohninsland A, Lalitha K, Li Y, Hall DA. Re-entrant relaxor ferroelectric behaviour in Nb-doped BiFeO3–BaTiO3 ceramics. J Mater Chem C 2023;11(6):2186–95.

[55]

Yao Z, Xu C, Liu H, Hao H, Cao M, Wang Z, Song Z, Hu W, Ullah A. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3–BaTiO3 high temperature piezoceramics. J Mater Sci Mater Electron 2014;25(11):4975–82.

[56]

Leist T, Granzow T, Jo W, Rödel J. Effect of tetragonal distortion on ferroelectric domain switching: a case study on La-doped BiFeO3–PbTiO3 ceramics. J Appl Phys 2010;108(1):014103.

[57]

Yue Y, Xu X, Zhang M, Yan Z, Koval V, Whiteley RM, Zhang D, Palma M, Abrahams I, Yan H. Grain size effects in Mn-modified 0.67BiFeO3–0.33BaTiO3 ceramics. ACS Appl Mater Interfaces 2021;13(48):57548–59.

[58]

Stevenson PJ, Hall DA. The effect of grain size on the high field dielectric properties of hard PZT ceramics. Ferroelectrics 1999;223(1):309–18.

[59]
Schultheiß J, Picht G, Wang J, Genenko Y, Chen L, Daniels J, Koruza J. Ferroelectric Polycrystals: structural and microstructural levers for property engineering via domain-wall dynamics. 2022. arXiv preprint arXiv:2208.11368.
[60]

Calisir I, Kleppe AK, Feteira A, Hall DA. Quenching-assisted actuation mechanisms in core–shell structured BiFeO3–BaTiO3 piezoceramics. J Mater Chem C 2019;7(33):10218–30.

[61]

Damjanovic D, Demartin M. The Rayleigh law in piezoelectric ceramics. J Phys Appl Phys 1996;29(7):2057.

[62]

Kobayashi K, Hatano K, Mizuno Y, Randall CA. Rayleigh behavior in the lead free piezoelectric Lix(Na0.5K0.5)1-xNbO3 ceramic. APEX 2012;5(3):031501.

[63]

Hall D, Steuwer A, Cherdhirunkorn B, Mori T, Withers P. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics. Acta Mater 2006;54(11):3075–83.

[64]

Jones JL, Slamovich EB, Bowman KJ. Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction. J Appl Phys 2005;97(3):034113.

[65]

Hall D, Steuwer A, Cherdhirunkorn B, Withers P, Mori T. Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics. J Mech Phys Solid 2005;53(2):249–60.

[66]

Jones JL, Hoffman M, Bowman KJ. Saturated domain switching textures and strains in ferroelastic ceramics. J Appl Phys 2005;98(2):024115.

[67]

Zhou D, Kamlah M. Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta Mater 2006;54(5):1389–96.

[68]

Hinterstein M, Lee K-Y, Esslinger S, Glaum J, Studer A, Hoffman M, Hoffmann M. Determining fundamental properties from diffraction: electric field induced strain and piezoelectric coefficient. Phys Rev B 2019;99(17):174107.

Journal of Materiomics
Pages 57-69
Cite this article:
Yang Z, Li Y, Wang B, et al. Acceptor doping and actuation mechanisms in Sr-doped BiFeO3–BaTiO3 ceramics. Journal of Materiomics, 2024, 10(1): 57-69. https://doi.org/10.1016/j.jmat.2023.04.007

96

Views

5

Crossref

8

Web of Science

8

Scopus

Altmetrics

Received: 13 February 2023
Revised: 03 April 2023
Accepted: 14 April 2023
Published: 24 May 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return