AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Co/carbon nanofiber with adjustable size and content of Co nanoparticles for tunable microwave absorption and thermal conductivity

Shaohua Shia,1Pengpeng Moua,1Dao WangcXiangying Lib,( )Shengjie TengaMaofan ZhouaXiaolong Yua,dZhen DengaGengping WanaGuizhen Wanga,( )
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, China
College of Science, Qiongtai Normal University, Haikou, Hainan, 571127, China
Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China

1 These authors contributed equally.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Electromagnetic pollution and heat dissipation problems are becoming increasingly worthy of attention due to the rapid development of electronic devices, which puts forward an urgent demand for microwave absorbers with excellent thermal management performance. Herein, high-performance Co/carbon nanofiber (Co/CNF) microwave absorbers with high thermal conductivity were fabricated by facile step-by-step method. The microwave absorption properties can be readily tuned by adjusting the content and size of Co nanoparticles through concentration gradient adsorption. Benefiting from the formation of dielectric and magnetic coupling network, Co/CNF composites possess intensive dipole polarization, interface polarization, and magnetic loss. The optimal Co/CNF composites exhibit outstanding microwave absorption performance with a minimum reflection loss (RL) of −53.0 dB at 11.44 GHz, and a maximum effective absorption bandwidth (EAB) of 5.5 GHz. In addition, the thermal conductivities of the Co/CNF-natural rubber (Co/CNF-NR) composites are significantly improved. This work may inspire the exploration of high-efficiency heat-conduction microwave absorbers based on CNF.

References

[1]

Wu L, Liu X, Wan G, Peng X, He Z, Shi S, et al. Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers. Chem Eng J 2022;448:137600.

[2]

Guan X, Yang Z, Zhou M, Yang L, Peymanfar R, Aslibeiki B, et al. 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct 2022;3(10):2200102.

[3]

Zhu S, Shu J, Cao M. Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 2022;14(19):7322-31.

[4]

Mou P, Wan G, Wu L, Liu D, Wang G. Optimizing impedance matching and interfacial characteristics of aromatic polyimide/graphene by molecular layer deposition for heat-conducting microwave absorption. J Mater Chem A 2023;11:4345-54.

[5]

Wu Y, Tan S, Zhao Y, Liang L, Zhou M, Ji G. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog Mater Sci 2023;135:101088.

[6]

Zhou M, Xu X, Wan G, Mou P, Teng S, Wang G. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res 2022;15(10):8677-87.

[7]

Zhao H, Wang F, Cui L, Xu X, Han X, Du Y. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett 2021;13(1):208.

[8]

Wu Y, Wang G, Yuan X, Fang G, Li P, Ji G. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res 2023;16:2611-21.

[9]

Pu L, Li S, Zhang Y, Zhu H, Fan W, Ma P, et al. Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J Mater Chem C 2021;9(6):2086-94.

[10]

Jeon J, Park S, Ha T. Functionalization of zinc oxide nanoflowers with palladium nanoparticles via microwave absorption for room temperature-operating hydrogen gas sensors in the ppb Level. ACS Appl Mater Interfaces 2021;13(21):25082-91.

[11]

Shi X, Wu Z, Liu Z, Lv Gj, Zi Z, Che R. Interface engineering in hierarchical assembly of carbon-confined Fe3O4 nanospheres for enhanced microwave absorption. J Mater Chem A 2022;10:8807-16.

[12]

Luo J, Wang Y, Qu Z, Wang W, Yu D. Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem Eng J 2022;442:136388.

[13]

Chen X, Yang M, Zhao X, Hu D, Liu W, Ma W. Tailoring superhydrophobic PDMS/CeFe2O4/MWCNTs nanocomposites with conductive network for highly efficient microwave absorption. Chem Eng J 2022;432:134226.

[14]

Xue J, Ren F, Dong Y, Wei H, Yang F, Cheng L. Si3N4-BN-SiCN ceramics with unique hetero-interfaces for enhancing microwave absorption properties. Ceram Int 2021;47(9):12261-8.

[15]

Qin H, Liu Y, Ye F, Cheng Z, Chen C, Cheng L, et al. Dielectric and microwave absorption properties of SiCnw-SiBCN composite ceramics deposited via chemical vapor infiltration. J Alloys Compd 2019;771:747-54.

[16]

Zhou M, Wang J, Tan S, Ji G. Top-down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding. Mater Today Phys 2023;31:100962.

[17]

Jiao Y, Wu F, Xie A, Wu L, Zhao W, Zhu X, et al. Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption. Chem Eng J 2020;398:125591.

[18]

Wei Q, Xiao H, Li Z, Zhang B, Cai H. Microwave absorption properties of Ni-substituted cobalt ferrite-loaded carbon nanofiber composites. J Mater Sci Mater Electron 2021;32:8429-39.

[19]

Geng H, Zhang X, Xie W, Zhao P, Wang G, Liao J, et al. Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J Colloid Interface Sci 2022;609:33-42.

[20]

Zhao Y, Zhang Y, Yang C, Cheng L. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption. Carbon 2021;171:474-83.

[21]

Huang W, Tong Z, Wang R, Liao Z, Bi Y, Chen Y, et al. A review on electrospinning nanofibers in the field of microwave absorption. Ceram Int 2020;46(17):26441-53.

[22]

Lv H, Zhang H, Zhao J, Ji G, Du Y. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res 2016;9(6):1813-22.

[23]

Guo R, Su D, Chen F, Cheng Y, Wang X, Gong R, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption. ACS Appl Mater Interfaces 2022;14(2):3084-94.

[24]

Wang J, Huyan Y, Yang Z, Zhang A, Zhang Q, Zhang B. Tubular carbon nanofibers: synthesis, characterization and applications in microwave absorption. Carbon 2019;152:255-66.

[25]

Liu X, Nie X, Yu R, Feng H. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem Eng J 2018;334:153-61.

[26]

Huan X, Wang H, Deng W, Yan J, Xu K, Geng H, et al. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022;18(13):2105411.

[27]

Xu X, Shi S, Tang Y, Wang G, Zhou M, Zhao G, et al. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv Sci 2021;8(5):2002658.

[28]

Liu P, Gao S, Zhang G, Huang Y, You W, Che R. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv Funct Mater 2021;31(27):2102812.

[29]

Xu X, Wang G, Wan G, Shi S, Hao C, Tang Y, et al. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chem Eng J 2020;382:122980.

[30]

Wang B, Wu Q, Fu Y, Liu T. A review on carbon/magnetic metal composites for microwave absorption. J Mater Sci Technol 2021;86:91-109.

[31]

Wan G, Luo Y, Wu L, Wang G. The fabrication and high-efficiency electromagnetic wave absorption performance of CoFe/C core–shell structured nanocomposites. Nanoscale Res Lett 2018;13(1):68.

[32]

Zheng S, Zeng Z, Qiao J, Liu Y, Liu J. Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption. Compos Part A Appl Sci Manuf 2022;155:106814.

[33]

Fu X, Zheng Q, Li L, Cao M. Vertically implanting MoSe2 nanosheets on the rGO sheets towards excellent multi-band microwave absorption. Carbon 2022;197:324-33.

[34]

Wang F, Liu Y, Zhao H, Cui L, Gai L, Han X, et al. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem Eng J 2022;450:138160.

[35]

Ding D, Wang Y, Li X, Qiang R, Xu P, Chu W, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017;111:722-32.

[36]

Han B, Chu W, Han X, Xu P, Liu D, Cui L, et al. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 2020;168:404-14.

[37]

Wang G, Gao Z, Tang S, Chen C, Duan F, Zhao S, et al. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012;6(12):11009-17.

[38]

Li Y, Wang J, Liu R, Zhao X, Wang X, Zhang X, et al. Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite. J Alloys Compd 2017;724:1023-9.

[39]

Wei Q, Xiao H, Li Z, Zhang B, Cai H. Microwave absorption properties of Ni-substituted cobalt ferrite-loaded carbon nanofiber composites. J Mater Sci Mater Electron 2021;32(7):8429-39.

[40]

Qi X, Hu Q, Xu J, Xie R, Jiang Y, Zhong W, et al. The synthesis and excellent electromagnetic radiation absorption properties of core/shell-structured Co/carbon nanotube-graphene nanocomposites. RSC Adv 2016;6(14):11382-7.

[41]

Zheng Z, Xu B, Huang L, He L, Ni X. Novel composite of Co/carbon nanotubes: synthesis, magnetism and microwave absorption properties. Solid State Sci 2008;10(3):316-20.

[42]

Wang Y, Di X, Lu Z, Cheng R, Wu X, Gao P. Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 2022;187:404-14.

[43]

Mou P, Zhao J, Wang G, Shi S, Wan G, Zhou M, et al. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chem Eng J 2022;437:135285.

[44]

Jiang H, Zhou P, Wang Y, Duan R, Chen C, Song W, et al. Copper-based coordination polymer nanostructure for visible light photocatalysis. Adv Mater 2016;28(44):9776. 81.

[45]

Shi S, Tang Y, Wang G, Yu W, Wan G, Wu L, et al. Multiple reinforcement effect induced by gradient carbon coating to comprehensively promote lithium storage performance of Ti2Nb10O29. Nano Energy 2022;96:107132.

[46]

Ma B, Chen F, Cheng Y, Wang X, Yan S, Gong R, et al. Ti3C2Tx MXene@NiFe layered double hydroxide derived multiple interfacial composites with efficient microwave absorption. J Alloys Compd 2023;936:168162.

[47]

Luo H, Lv S, Liu G, Cheng Y, Ge X, Wang X, et al. Multi-interfacial magnetic carbon nanotubes encapsulated hydrangea-like NiMo/MoC/N-doped carbon composites for efficient microwave absorption. Carbon 2022;196:828-39.

[48]

Liang L, Zhang Z, Song F, Zhang W, Li H, Gu J, et al. Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon 2020;162:283-91.

[49]

Wang L, Huang M, Yu X, You W, Zhang J, Liu X, et al. MOF-derived Ni1−xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett 2020;12(1):150.

[50]

Shen Y, Zhang F, Zhang Y, Song P, Gao F, Zhang D, et al. Space-confined fabrication of hydrophobic magnetic carbon nanofibers for lightweight and enhanced microwave absorption. Carbon 2022;197:544-54.

[51]

Wan G, Yu L, Peng X, Wang G, Huang X, Zhao H, et al. Preparation and microwave absorption properties of uniform TiO2@C core–shell nanocrystals. RSC Adv 2015;5(94):77443-8.

[52]

Liu D, Mou P, Wei Q, Xu Y, Wan G, Wang G. Nanowires/nanohelices hybrid carbon aerogels as the lightweight and hydrophobic microwave absorbers with excellent electrothermal properties. Carbon 2023;204:7-16.

[53]

Wen F, Zhang F, Liu Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lghtweight absorbers. J Phys Chem C 2011;115(29):14025-30.

[54]

Wang L, He F, Wan Y. Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe-Co alloy by electroplating. J Alloys Compd 2011;509(14):4726-30.

[55]

Chai L, Wang Y, Zhou N, Du Y, Zeng X, Zhou S, et al. In-situ growth of core-shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber. J Colloid Interface Sci 2021;581:475-84.

[56]

Liu P, Gao S, Wang Y, Zhou F, Huang Y, Luo J. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos B Eng 2020;202:108406.

[57]

Qiang C, Xu J, Zhang Z, Tian L, Xiao S, Liu Y, et al. Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles. J Alloys Compd 2010;506(1):93-7.

[58]

ur Rehman S, Wang J, Luo Q, Sun M, Jiang L, Han Q, et al. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem Eng J 2019;373:122-30.

[59]

Sun G, Wu H, Liao Q, Zhang Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res 2018;11(5):2689-704.

[60]

Shen Y, Wei Y, Ma J, Li Q, Li J, Shao W, et al. Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. Ceram Int 2019;45(3):3313-24.

[61]

Jiang L, Wang Z, Li D, Geng D, Wang Y, An J, et al. Excellent microwave-absorption performances by matched magnetic-dielectric properties in double-shelled Co/C/polyaniline nanocomposites. RSC Adv 2015;5(50):40384-92.

[62]

Chen F, Zhang S, Ma B, Xiong Y, Luo H, Cheng Y, et al. Bimetallic CoFe-MOF@Ti3C2T MXene derived composites for broadband microwave absorption. Chem Eng J 2022;431:134007.

[63]

Shen Y, Zhang F, Zhang Y, Dang M, Li B, Ma J, et al. Ni/NiO/SiO2/C nanofibers with strong wideband microwave absorption and robust hydrophobicity. Appl Surf Sci 2022;588:152964.

[64]

Shen Y, Zhang F, Song P, Zhang Y, Zhang T, Wen X, et al. Design and synthesis of magnetic porous carbon nanofibers with excellent microwave absorption. J Alloys Compd 2022;903:163971.

[65]

Xu H, Yin X, Zhu M, Han M, Hou Z, Li X, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl Mater Interfaces 2017;9(7):6332-41.

[66]

Li Z, Han X, Ma Y, Liu D, Wang Y, Xu P, et al. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustainable Chem Eng 2018;6(7):8904-13.

[67]

He J, Liu X, Deng Y, Peng Y, Deng L, Luo H, et al. Improved magnetic loss and impedance matching of the FeNi-decorated Ti3C2T MXene composite toward the broadband microwave absorption performance. J Alloys Compd 2021;862:158684.

[68]

Wu Z, Pei K, Xing L, Yu X, You W, Che R. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv Funct Mater 2019;29(28):1901448.

[69]

Liu P, Gao S, Wang Y, Huang Y, He W, Huang W, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem Eng J 2020:381.

[70]

Liu P, Zhang G, Xu H, Cheng S, Huang Y, Ouyang B, et al. Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv Funct Mater 2023;33(13):2211298.

[71]

Liu P, Wang Y, Zhang G, Huang Y, Zhang R, Liu X, et al. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv Funct Mater 2022;32(33):2202588.

[72]

Chen J, Wang Y, Liu Y, Tan Y, Zhang J, Liu P, et al. Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption. Carbon 2023;208:82-91.

[73]

Chen J, Wang Y, Gu Z, Huang J, He W, Liu P. Rational design of hierarchical yolk-double shell Fe@NCNs/MnO2 via thermal-induced phase separation toward wideband microwave absorption. Carbon 2023;204:305-14.

[74]

Gong C, Wang X, Liu H, Zhao C, Zhang Y, Jia Y, et al. Facile in situ synthesis of nickel/cellulose nanocomposites: mechanisms, properties and perspectives. Cellulose 2014;21(6):4359-68.

[75]

Wu F, Yang K, Li Q, Shah T, Ahmad M, Zhang Q, et al. Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon 2021;173:918-31.

[76]

Gu W, Ong SJH, Shen Y, Guo W, Fang Y, Ji G, et al. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv Sci 2022;9(35):2204165.

[77]

Huang Q, Zhao Y, Wu Y, Zhou M, Tan S, Tang S, et al. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem Eng J 2022;446:137279.

[78]

Ren S, Yu H, Wang L, Huang Z, Lin T, Huang Y, et al. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett 2022;14(1):68.

[79]

Huang Z, Cheng J, Zhang H, Xiong Y, Zhou Z, Zheng Q, et al. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J Mater Sci Technol 2022;107:155-64.

[80]

Wu L, Shi S, Wang G, Mou P, Liu X, Liu J, et al. Carbon nanocoils/carbon foam as the dynamically frequency-tunable microwave absorbers with an ultrawide tuning range and absorption bandwidth. Adv Funct Mater 2022;32(52):2209898.

[81]

Mu X, Cai H, Zhang H, Fan Q, Wang F, Zhang Z, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites. Carbon 2018;137:146-55.

[82]

Zhao X, Huang C, Liu Q, II Smalyukh, Yang R. Thermal conductivity model for nanofiber networks. J Appl Phys 2018;123(8):085103.

[83]

Zhang J, Du Z, Zou W, Li H, Zhang C. MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite. Compos Sci Technol 2017;148:1-8.

Journal of Materiomics
Pages 124-133
Cite this article:
Shi S, Mou P, Wang D, et al. Co/carbon nanofiber with adjustable size and content of Co nanoparticles for tunable microwave absorption and thermal conductivity. Journal of Materiomics, 2024, 10(1): 124-133. https://doi.org/10.1016/j.jmat.2023.04.010

134

Views

12

Crossref

9

Web of Science

12

Scopus

Altmetrics

Received: 26 February 2023
Revised: 19 April 2023
Accepted: 23 April 2023
Published: 25 May 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return