AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Generative artificial intelligence and its applications in materials science: Current situation and future perspectives

Yue Liua,dZhengwei YangaZhenyao YuaZitu LiuaDahui LiuaHailong LinbMingqing LibShuchang MaaMaxim Avdeeve,fSiqi Shib,c,( )
School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
Materials Genome Institute, Shanghai University, Shanghai, 200444, China
Shanghai Engineering Research Center of Intelligent Computing System, Shanghai, 200444, China
Australian Nuclear Science and Technology Organisation, Sydney, 2232, Australia
School of Chemistry, The University of Sydney, Sydney, 2006, Australia

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Generative Artificial Intelligence (GAI) is attracting the increasing attention of materials community for its excellent capability of generating required contents. With the introduction of Prompt paradigm and reinforcement learning from human feedback (RLHF), GAI shifts from the task-specific to general pattern gradually, enabling to tackle multiple complicated tasks involved in resolving the structure-activity relationships. Here, we review the development status of GAI comprehensively and analyze pros and cons of various generative models in the view of methodology. The applications of task-specific generative models involving materials inverse design and data augmentation are also dissected. Taking ChatGPT as an example, we explore the potential applications of general GAI in generating multiple materials content, solving differential equation as well as querying materials FAQs. Furthermore, we summarize six challenges encountered for the use of GAI in materials science and provide the corresponding solutions. This work paves the way for providing effective and explainable materials data generation and analysis approaches to accelerate the materials research and development.

References

[1]

Liu Yue, Zhao Tianlu, Ju Wangwei, Shi Siqi. Materials discovery and design using machine learning. J. Materiom. 2017;3:159-77.

[2]

Liu Yue, Guo Biru, Zou Xinxin, Li Yajie, Shi Siqi. Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater 2020;31:434-50.

[3]

Jovanović Mlađan, Campbell Mark. Generative artificial intelligence: trends and prospects. Computer 2022;55:107-12.

[4]

Cao Hanqun, Tan Cheng, Gao Zhangyang, Chen Guangyong, Ann Heng Pheng, Stan Z Li. A survey on generative diffusion model. arXiv:220902646 2022.

[5]

Jabbar Abdul, Li Xi, Omar Bourahla. A survey on generative adversarial networks: variants, applications, and training. ACM Comput Surv 2021;54:1-49.

[6]

Sanchez-Lengeling Benjamin, Aspuru-Guzik Alán. Inverse molecular design using machine learning: generative models for matter engineering. Science 2018;361:360-5.

[7]

Luo Shitong, Shi Chence, Xu Minkai, Tang Jian. Predicting molecular conformation via dynamic graph score matching. Adv Neural Inf Process Syst 2021;34:19784-95.

[8]

Chen Litao, Zhang Wentao, Nie Zhiwei, Li Shunning, Pan Feng. Generative models for inverse design of inorganic solid materials. J. Mater. Inform. 2021;1:4.

[9]
Hoogeboom Emiel, Garcia Satorras Victor, Vignac Clément, Welling Max. Equivariant diffusion for molecule generation in 3D. In: Proceedings of the39th international conference on machine learning, 162; 2022. p. 8867-87.
[10]

Zhao Yong, Edirisuriya M, Siriwardane Dilanga, Wu Zhenyao, Fu Nihang, Al-Fahdi Mohammed, Hu Ming, et al. Physics guided deep learning for generative design of crystal materials with symmetry constraints. npj Comput Mater 2023;9:38.

[11]
Rick Stevens, Taylor Valerie, Nichols Jeff, Arthur Barney Maccabe, Katherine Yelick, Brown David. AI for science: report on the department ofenergy (DOE) town Halls on artificial intelligence (AI) for science. 2020.United States.
[12]

Liu Pengfei, Yuan Weizhe, Fu Jinlan, Jiang Zhengbao, Hayashi Hiroaki, Graham Neubig. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput Surv 2023;55:1-35.

[13]

Wang Yaqing, Yao Quanming, James T, Kwok. Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv 2020;53(3):1-34.

[14]

Xian Yongqin, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal Mach Intell 2018;41:2251-65.

[15]

Ouyang Long, Wu Jeffrey, Jiang Xu, Almeida Diogo, Wainwright Carroll, Mishkin Pamela, et al. Training language models to follow instructions with human feedback. Adv Neural Inf Process Syst 2022;35:27730-44.

[16]
Bubeck Sébastien, Chandrasekaran Varun, Ronen Eldan, Gehrke Johannes, Horvitz Eric, Kamar Ece, et al. Sparks of artificial general intelligence: early experiments with GPT-4. arXiv:230312712 2023.
[17]
Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi Yang. Is chatgpt a general-purpose natural language processing task solver?. arXiv:230206476.
[18]

Goodfellow Ian, Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, Warde-Farley David, Ozair Sherjil, et al. Generative adversarial networks. Commun ACM 2020;63:139-44.

[19]
Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.arXiv:14111784.
[20]
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representationlearning with deep convolutional generative adversarial networks. arXiv: 151106434.
[21]
Martin Arjovsky, Chintala Soumith, Bottou Léon. Wasserstein generative adversarial networks. In: Proceedings of the 34th international conferenceon machine learning, 70; 2017. p. 214-23.
[22]

Gulrajani Ishaan, Ahmed Faruk, Martin Arjovsky, Vincent Dumoulin, Aaron C Courville. Improved training of wasserstein GANs. Adv Neural Inf Process Syst 2017;30.

[23]
Zhu Junyan, Park Taesung, Isola Phillip, Alexei A. Efros. Unpaired image-toimage translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. ICCV);2017. p. 2223-32.
[24]
Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and Youngmin Kim. Data synthesis based on generative adversarial networks. arXiv:180603384.
[25]
Lei Xu and Kalyan Veeramachaneni. Synthesizing tabular data using generative adversarial networks. arXiv:181111264.
[26]

Xu Lei, Skoularidou Maria, Cuesta-Infante Alfredo, Veeramachaneni Kalyan. Modeling tabular data using conditional GAN. Adv Neural Inf Process Syst 2019;32.

[27]

Ma Boyuan, Wei Xiaoyan, Liu Chuni, Ban Xiaojuan, Huang Haiyou, Wang Hao, et al. Data augmentation in microscopic images for material data mining. npj Comput Mater 2020;6:1-9.

[28]

Marani Afshin, Jamali Armin, Moncef L, Nehdi. Predicting ultra-high-performance concrete compressive strength using tabular generative adversarial networks. Materials 2020;13:4757.

[29]

Yang Zhiyuan, Li Shu, Li Shuai, Jia Yang, Liu Dongrong. A two-step data augmentation method based on generative adversarial network for hardness prediction of high entropy alloy. Comput Mater Sci 2023;220:112064.

[30]

Dan Yabo, Zhao Yong, Xiang Li, Li Shaobo, Hu Ming, Hu Jianjun. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj Comput Mater 2020;6:84.

[31]

Song Yuqi, Edirisuriya M, Siriwardane Dilanga, Zhao Yong, Hu Jianjun. Computational discovery of new 2D materials using deep learning generative models. ACS Appl Mater Interfaces 2021;13:53303-13.

[32]

Kim Sungwon, Noh Juhwan, Gu Geun Ho, Aspuru-Guzik Alan, Jung Yousung. Generative adversarial networks for crystal structure prediction. ACS Cent Sci 2020;6:1412-20.

[33]

Long T, Fortunato NM, Opahle I, et al. Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures. npj Comput Mater 2021;7:66.

[34]
Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv: 13126114.
[35]

Michelucci U. An introduction to autoencoders. arXiv preprint arXiv:220103898 2022.

[36]
Larsen ABL, Sønderby SK, Larochelle H, et al. Autoencoding beyond pixelsusing a learned similarity metric. In: International conference on machinelearning. PMLR; 2016. p. 1558-66.
[37]

Chen X, Kingma DP, Salimans T, et al. Variational lossy autoencoder. arXiv preprint arXiv:161102731 2016.

[38]

Vahdat A, Kautz J. NVAE: a deep hierarchical variational autoencoder. Adv Neural Inf Process Syst 2020;33:19667-79.

[39]

Van Den Oord A, Vinyals O. Neural discrete representation learning. Adv Neural Inf Process Syst 2017;30.

[40]

Dupont E. Learning disentangled joint continuous and discrete representations. Adv Neural Inf Process Syst 2018;31.

[41]

Razavi A, Van den Oord A, Vinyals O. Generating diverse high-fidelity images with vq-vae-2. Adv Neural Inf Process Syst 2019;32.

[42]
Higgins I, Matthey L, Pal A, et al. beta-vae: learning basic visual concepts witha constrained variational framework. 2016.
[43]
Kim H, Mnih A. Disentangling by factorising. In: International conference onmachine learning. PMLR; 2018. p. 2649-58.
[44]

Chen RT, Li X, Grosse RB, et al. Isolating sources of disentanglement in variational autoencoders. Adv Neural Inf Process Syst 2018;31.

[45]

Gomez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 2018;4(2):268-76.

[46]

Noh J, Kim J, Stein HS, et al. Inverse design of solid-state materials via a continuous representation. Matter 2019;1(5):1370-84.

[47]
Sardeshmukh A, Reddy S, Gautham B, et al. TextureVAE: learning interpretable representations of material microstructures using variationalautoencoders. In: AAAI spring symposium. MLPS; 2021.
[48]

Oubari F, De Mathelin A, Décatoire R, et al. A binded VAE for inorganic material generation. arXiv preprint arXiv:211209570 2021.

[49]

Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst 2020;33:6840-51.

[50]

Dhariwal P, Nichol A. Diffusion models beat GANs on image synthesis. Adv. Neural Inform. Process. Sys. 34 2021;34(Neurips 2021):8780-94.

[51]

Song J, Meng C, Ermon S. Denoising diffusion implicit models. arXiv preprint arXiv:201002502 2020.

[52]

Watson D, Ho J, Norouzi M, et al. Learning to efficiently sample from diffusion probabilistic models. arXiv preprint arXiv:210603802 2021.

[53]
Watson D, Chan W, Ho J, et al. Learning fast samplers for diffusion models bydifferentiating through sample quality. In: International conference onlearning representations; 2022.
[54]
Dockhorn T, Vahdat A, Kreis K. GENIE: higher-order denoising diffusionsolvers. arXiv preprint arXiv:221005475 2022.
[55]
Meng C, Gao R, Kingma DP, et al. On distillation of guided diffusion models. arXiv preprint arXiv:221003142 2022.
[56]

Vahdat A, Kreis K, Kautz J. Score-based generative modeling in latent space. Adv Neural Inf Process Syst 2021;34:11287-302.

[57]

Austin J, Johnson DD, Ho J, et al. Structured denoising diffusion models in discrete state-spaces. Adv Neural Inf Process Syst 2021;34:17981-93.

[58]
Nichol AQ, Dhariwal P. Improved denoising diffusion probabilistic models.In: International conference on machine learning. PMLR; 2021. p. 8162-71.
[59]

Kingma D, Salimans T, Poole B, et al. Variational diffusion models. Adv Neural Inf Process Syst 2021;34:21696-707.

[60]

Song Y, Durkan C, Murray I, et al. Maximum likelihood training of score-based diffusion models. Adv Neural Inf Process Syst 2021;34:1415-28.

[61]

Bao F, Li C, Zhu J, et al. Analytic-dpm: an analytic estimate of the optimal reverse variance in diffusion probabilistic models. arXiv preprint arXiv:220106503 2022.

[62]
Lim HJ, Lee K-H, Yun GJ. Microstructure design of multifunctional particulate composite materials using conditional diffusion models. arXiv preprint arXiv:230109051 2023.
[63]
Anand N, Achim T. Protein structure and sequence generation with equivariant denoising diffusion probabilistic models. arXiv preprint arXiv:220515019 2022.
[64]
Schneuing A, Du Y, Harris C, et al. Structure-based drug design with equivariant diffusion models. arXiv preprint arXiv:221013695 2022.
[65]
Shi C, Wang C, Lu J, et al. Protein sequence and structure co-design with equivariant translation. arXiv preprint arXiv:221008761 2022.
[66]
Dinh L, Krueger D, Bengio Y. Nice: non-linear independent components estimation. arXiv preprint arXiv:14108516 2014.
[67]
Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimationusing real nvp. arXiv:160508803.
[68]

Kingma Durk P, Dhariwal Prafulla. Glow: generative flow with invertible 1x1 convolutions. Adv Neural Inf Process Syst 2018;31:10236-45.

[69]

Chen Ricky TQ, Rubanova Yulia, Bettencourt Jesse, Duvenaud David K. Neural ordinary differential equations. Adv Neural Inf Process Syst 2018;31:6572-83.

[70]
Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and DavidDuvenaud. FFJORD: free-form continuous dynamics for scalable reversiblegenerative models. arXiv:181001367.
[71]

Ohno Hiroshi. Training data augmentation: an empirical study using generative adversarial net-based approach with normalizing flow models for materials informatics. Appl Soft Comput 2020;86:105932.

[72]

Radford Alec, Wu Jeffrey, Child Rewon, Luan David, Amodei Dario, Sutskever Ilya. Language models are unsupervised multitask learners. OpenAI blog 2019;1:9.

[73]

Brown Tom, Mann Benjamin, Ryder Nick, Subbiah Melanie, Kaplan Jared D, Dhariwal Prafulla, et al. Language models are few-shot learners. Adv Neural Inf Process Syst 2020;33:1877-901.

[74]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding.arXiv:181004805.
[75]
Tong Xie, Yuwei Wan, Wei Huang, Yufei Zhou, Yixuan Liu, and QingyuanLinghu et al. Large Language models as master key: unlocking the secrets ofmaterials science with GPT. arXiv:230402213.
[76]

Hong Zijian. ChatGPT for Computational Materials Science: A Perspective. Energy Mater Adv. 2023;4:0026.

[77]

Chen Xing, Abreu Araujo Flavio, Riou Mathieu, Jacob Torrejon, Ravelosona Dafiné, Wang Kang, et al. Forecasting the outcome of spintronic experiments with neural ordinary differential equations. Nat Commun 2022;13:1016.

[78]

Li Yajie, Sha Liting, Lv Peili, Qiu Na, Zhao Wei, Chen Bin, et al. Influences of separator thickness and surface coating on lithium dendrite growth: a phase-field study. Materials 2022;15:7912.

[79]
Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, and SebastianBorgeaud et al. Emergent abilities of large language models. arXiv: 220607682.
[80]

Liu Yue, Zou Xinxin, Yang Zhengwei, Shi Siqi. Machine learning embedded with materials domain knowledge. J Chin Ceram Soc 2022;50:863-76.

[81]

Fuhr Addis S, Sumpter Bobby G. Deep generative models for materials discovery and machine learning-accelerated innovation. Frontiers in Materials 2022;9:865270.

[82]

Liu Yue, Yang Zhengwei, Zou Xinxin, Ma Shuchang, Liu Dahui, Avdeev Maxim, et al. Data quantity governance for machine learning in materials science. Natl Sci Rev 2023;10. nwad125.

[83]

Shi Siqi, Sun Shiyu, Ma Shuchang, Zou Xinxin, Qian Quan, Liu Yue. Detection method on data accuracy incorporating materials domain knowledge. J Inorg Mater 2022;37:1311.

[84]

Weston L, Tshitoyan V, Dagdelen J, Kononova O, Trewartha A, Persson KA, et al. Named entity recognition and normalization applied to large-scale information extraction from the materials science literature. J. Chem. Inf. Model. 2019;59:3692-702.

[85]

Tshitoyan Vahe, Dagdelen John, Weston Leigh, Dunn Alexander, Rong Ziqin, Kononova Olga, et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 2019;571:95-8.

[86]

Nie Zhiwei, Zheng Shisheng, Liu Yuanji, Chen Zhefeng, Li Shunning, Lei Kai, et al. Automating materials exploration with a semantic knowledge graph for Li-ion battery cathodes. Adv Funct Mater 2022;32:2201437.

[87]

Liu Yue, Ge Xianyuan, Yang Zhengwei, Sun Shiyu, Liu Dahui, Avdeev Maxim, et al. An automatic descriptors recognizer customized for materials science literature. J Power Sources 2022;545:231946.

[88]

Liu Yue, Ding Lin, Yang ZhengWei, Ge XianYuan, Liu DaHui, Liu Wei, et al. Domain knowledge discovery from abstracts of scientific literature on Nickel-based single crystal superalloys. Sci China Technol Sci 2023.

[89]

Ishikawa Atsushi. Heterogeneous catalyst design by generative adversarial network and first-principles based microkinetics. Sci Rep 2022;12:11657.

[90]

Shen Yujun, Yang Ceyuan, Tang Xiaoou, Zhou Bolei. Interfacegan: interpreting the disentangled face representation learned by GANs. IEEE Trans Pattern Anal Mach Intell 2020;44:2004-18.

[91]

Liu Yue, Liu Zitu, Li Shuang, Yu Zhenyao, Guo Yike, Liu Qun, et al. Cloud-VAE: variational autoencoder with concepts embedded. Pattern Recogn 2023;140:109530.

[92]
Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, SvenGiesselbach, and Raoul Heese et al. Informed machine learning–A taxonomyand survey of integrating knowledge into learning systems. arXiv: 190312394.
[93]

Zhao Yong, Al-Fahdi Mohammed, Hu Ming, Edirisuriya M, Siriwardane D, Song Yuqi, Nasiri Alireza, et al. High-throughput discovery of novel cubic crystal materials using deep generative neural networks. Adv Sci 2021;8:e2100566.

[94]

Ren Pengzhen, Xiao Yun, Chang Xiaojun, Huang Po-yao, Li Zhihui, Chen Xiaojiang, et al. A comprehensive survey of neural architecture search: challenges and solutions. ACM Comput Surv 2021;54:1-34.

[95]
Liu Yue, Zhu Kai, Liu Zitu. SSRNAS: search space reduced one-shot NAS by arecursive attention-based predictor with cell tensor-flow diagram. In:2021international joint conference on neural networks; 2021. p. 1-8.
[96]

Chen Chun-Teh, Gu Grace X. Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv Sci 2020;7:1902607.

[97]
Jonathan Frankle, and Michael Carbin. The lottery ticket hypothesis: findingsparse, trainable neural networks. arXiv:180303635.
[98]
Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN trainingfor high fidelity natural image synthesis. arXiv:180911096.
[99]
Ganguli Deep, Hernandez Danny, Lovitt Liane, Askell Amanda, Bai Yuntao, Chen Anna, et al. Predictability and surprise in large generative models. In: 2022 ACM conference on fairness, accountability, and transparency; 2022.p. 1747-64.
[100]
Hu Hailong, Pang Jun. Stealing machine learning models: attacks andcountermeasures for generative adversarial networks. In: Annual computersecurity applications conference; 2021. p. 1-16.
Journal of Materiomics
Pages 798-816
Cite this article:
Liu Y, Yang Z, Yu Z, et al. Generative artificial intelligence and its applications in materials science: Current situation and future perspectives. Journal of Materiomics, 2023, 9(4): 798-816. https://doi.org/10.1016/j.jmat.2023.05.001

113

Views

48

Crossref

41

Web of Science

60

Scopus

Altmetrics

Received: 02 May 2023
Revised: 10 May 2023
Accepted: 12 May 2023
Published: 25 May 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return