AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

A review: (Bi,Na)TiO3 (BNT)-based energy storage ceramics

Wen ZhuZong-Yang Shen,( )Wei DengKai LiWenqin LuoFusheng SongXiaojun ZengZhumei WangYueming Li
Advanced Ceramic Materials Research Institute, China National Light Industry Key Laboratory of Functional Ceramic Materials, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Facing the increasingly serious energy and environmental problems, the research and development of new energy storage technology and environment-friendly energy storage materials are imminent. As a typical lead-free ferroelectric with excellent dielectric properties, (Bi,Na)TiO3 (BNT) is supposed to be the most potential and competitive environment-friendly ceramic material and has become a research hotspot for dielectric energy storage in recent years. This paper first briefly introduces the basic physical principles and energy storage performance evaluation parameters of dielectric energy storage materials, then summarizes the critical research systems and related progress of BNT-based lead-free energy storage materials (bulk ceramics, films and multilayer ceramics) from the aspects of ions doping modification and multi-component composite optimization, and finally looks forward to the improvement direction and energy storage application prospect of BNT-based lead-free relaxor ferroelectric materials.

References

[1]

Guney MS, Tepe Y. Classification and assessment of energy storage systems. Renew Sustain Energy Rev 2017;75:1187-97.

[2]

Olabi AG, Onumaegbu C, Wilberforce T, Ramadan M, Abdelkareem MA, Alami AH. Critical review of energy storage systems. Energy 2021;214:118987.

[3]

Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 2018;11(10):2696-767.

[4]

Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 2018;5(1):1700322.

[5]

Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.

[6]

Rahman MM, Oni AO, Gemechu E, Kumar A. Assessment of energy storage technologies: a review. Energy Convers Manag 2020;223:113295.

[7]

Palneedi H, Peddigari M, Hwang GT, Jeong DY, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018;28(42):1803665.

[8]

Hannan MA, Wali SB, Ker PJ, Rahman MS, Mansor M, Ramachandaramurthy VK, et al. Battery energy-storage system: a review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J Energy Storage 2021;42:103023.

[9]

Li Z, Niu Y, He X, Hu Y, Li F, Chen X, et al. Ultrahigh electrochemical performance in mixed-valence Cu1.85Se-based anode for supercapacitors. J Materiomics 2022;9(1):62-71.

[10]

Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008;7(11):845-54.

[11]

Liu XJ, Zheng MS, Chen G, Dang ZM, Zha JW. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ Sci 2022;15(1):56-81.

[12]

Supriya S. A review on lead-free-Bi0.5Na0.5TiO3 based ceramics and films: dielectric, piezoelectric, ferroelectric and energy storage performance. J Inorg Organomet Polym 2022;32:3659-76.

[13]

Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006;313(5785):334-6.

[14]

Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, et al. Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 2019;113:190-201.

[15]

Li F, Zhai J, Shen B, Zeng H. Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J Adv Dielectr 2018;8(6):1830005.

[16]

Qi H, Xie A, Zuo R. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review. Energy Storage Mater 2022;45:541-67.

[17]

Chen L, Sun N, Li Y, Zhang Q, Zhang L, Hao X. Multifunctional antiferroelectric MLCC with high-energy-storage properties and large field-induced strain. J Am Ceram Soc 2018;101(6):2313-20.

[18]

Li X, Shi Z, Han M, Tang Q, Xie P, Fan R. All-polymeric multilayer para/ferroelectric dielectric films utilizing a gradient structure toward concurrent high discharge efficiency and energy density. Mater Today Energy 2022;29:101119.

[19]

Li L, Fan P, Wang M, Takesue N, Salamon D, Vtyurin AN, et al. Review of lead-free Bi-based dielectric ceramics for energy-storage applications. J Phys D Appl Phys 2021;54(29):293001.

[20]

Li D, Zeng X, Li Z, Shen ZY, Hao H, Luo W, et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 2021;10(4):675-703.

[21]

Zhang L, Pu Y, Chen M, Wei Y, Peng X. Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J 2020;383:123154.

[22]

Shkuratov SI, Lynch CS. A review of ferroelectric materials for high power devices. J Materiomics 2022;8(4):739-52.

[23]

Liu L, Chu B, Li P, Fu P, Du J, Hao J, et al. Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry. Chem Eng J 2022;429:132548.

[24]

Zemánek M, Pribyl R, Kelar J, Pazderka M, Stastny P, Kudelcik J, et al. Electrical properties of alumina-based ceramic barrier layers for dielectric barrier discharge. Plasma Sources Sci Technol 2019;28(7):075001.

[25]

Fan J, Chen Y, Long Z, He G, Hu Z. Grain-boundary engineering inducing thermal stability, low dielectric loss and high energy storage in Ta+Ho co-doped TiO2 ceramics. Ceram Int 2022;48(15):21543-51.

[26]

Peddigari M, Palneedi H, Hwang GT, Ryu J. Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J Korean Ceram Soc 2019;56(1):1-23.

[27]

Liu Z, Lu T, Ye J, Wang G, Dong X, Withers R, et al. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3(9):1800111.

[28]

Qiao X, Zhang F, Wu D, Chen B, Zhao X, Peng Z, et al. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem Eng J 2020;388:124158.

[29]

Panda PK. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 2009;44(19):5049-62.

[30]

Zhang F, Qiao X, Zhou Q, Shi Q, Chao X, Yang Z, et al. High energy and power density achieved in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with excellent thermal stability. J Alloys Compd 2021;875:160005.

[31]

Li S, Hu T, Nie H, Fu Z, Xu C, Xu F, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Mater 2021;34:417-26.

[32]

Yang D, Gao J, Shu L, Liu YX, Yu J, Zhang Y, et al. Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J Mater Chem 2020;8(45):23724-37.

[33]

Samara, George A. The relaxational properties of compositionally disordered ABO3 perovskites. J Phys Condens Matter 2003;15(9):R367.

[34]

Li X, Dong X, Wang F, Tan Z, Zhang Q, Chen H, et al. Realizing excellent energy storage properties in Na0.5Bi0.5TiO3-based lead-free relaxor ferroelectric. J Eur Ceram Soc 2022;42(5):2221-9.

[35]

Liu Y, Ji Y, Yang Y. Growth, properties and applications of Bi0.5Na0.5TiO3 ferroelectric nanomaterials. Nanomaterials 2021;11(7):1724.

[36]

Hao X. A review on the dielectric materials for high energy-storage application. J Adv Dielectr 2013;3(1):1330001.

[37]

Wang G, Lu Z, Li Y, Li L, Ji H, Feteira A, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem Rev 2021;121(10):6124-72.

[38]

Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017;29(20):1601727.

[39]

Dang ZM, Yuan JK, Yao SH, Liao RJ. Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 2013;25(44):6334-65.

[40]

Mcpherson JW, Kim J, Shanware A, Mogul H, Rodriguez J. Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE Trans Electron Dev 2003;50(8):1771-8.

[41]

Neusel C, Jelitto H, Schmidt D, Janssen R, Felten F, Schneider GA. Thickness-dependence of the breakdown strength: analysis of the dielectric and mechanical failure. J Eur Ceram Soc 2015;35(1):113-23.

[42]

Liu B, Wang X, Zhang R, Li L. Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics. J Am Ceram Soc 2017;100(8):3599-607.

[43]

Zhou X, Xue G, Luo H, Bowen CR, Zhang D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog Mater Sci 2021;122:100836.

[44]

Benedek NA, Fennie CJ. Why are there so few perovskite ferroelectrics? J Phys Chem C 2013;117:13339-49.

[45]

Smolensky GA. New ferroelectrics of complex composition. IV. Sov Phys Solid State 1961;2:2651-4.

[46]

Aksel E, Jones JL. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 2010;10(3):1935-54.

[47]

Yin J, Tao H, Zhang Y, Han J, Huang Y, Li Z, et al. Advances in tuning the “d33∝1/Td” bottleneck: simultaneously realizing large d33 and high Td in Bi0.5Na0.5TiO3-based relaxor ferroelectrics. J Mater Chem 2020;8(18):9209-17.

[48]

Zvirgzds JA, Kapostin PP, Zvirgzde JV, Kruzina TV. X-ray study of phase transitions in efrroelectric Na0.5Bi0.5TiO3. Ferroelectrics 1982;40(1):75-7.

[49]

Zhang MS, Scott JF, Zvirgzds JA. Raman spectroscopy of Na0.5Bi0.5TiO3. Ferroelectrics Lett 1986;6(5):147-52.

[50]

Jones GO, Kreisel J, Jennings V, Geday MA, Thomas PA, Glazer AM. Investigation of a peculiar relaxor ferroelectric: Na0.5Bi0.5TiO3. Ferroelectrics 2002;270(1):191-6.

[51]

Isupov VA. Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions. Ferroelectrics 2005;315(1):123-47.

[52]

Jones GO, Thomas PA. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr Sect B 2002;58:168-78.

[53]

Sakata K, Masuda Y. Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 1974;7(1):347-9.

[54]

Dorcet V, Trolliard G, Boullay P. The structural origin of the antiferroelectric properties and relaxor behavior of Na0.5Bi0.5TiO3. J Magn Magn Mater 2009;321(11):1758-61.

[55]

Suchanicz J, Mercurio IP, Marchet P, Kruzina TV. Axial pressure influence on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 ceramic. Phys Status Solidi B 2001;225(2):459-66.

[56]

Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe HJ, Bell AJ, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3. J Appl Phys 2011;110(7):074106.

[57]

Rao BN, Fitch AN, Ranjan R. Ferroelectric-ferroelectric phase coexistence in Na1/2Bi1/2TiO3. Phys Rev B 2013;87(6):060102.

[58]

Suchanicz J, Kwapulinski J. X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3. Ferroelectrics 1995;165(1):249-53.

[59]

Suchanicz J, Roleder K, Kania A, Hańaderek J. Electrostrictive strain and pyroeffect in the region of phase coexistence in Na0.5Bi0.5TiO3. Ferroelectrics 1988;77(1):107-10.

[60]

Suchanicz J. Investigations of the phase transitions in Na0.5Bi0.5TiO3. Ferroelectrics 1995;172(1):455-8.

[61]

Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D. Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics. J Appl Phys 2009;105(9):094102.

[62]

Reichmann K, Feteira A, Li M. Bismuth sodium titanate based materials for piezoelectric actuators. Materials 2015;8(12):8467-95.

[63]

Dorcet V, Trolliard G, Boullay P. Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: first order rhombohedral to orthorhombic phase transition. Chem Mater 2008;20(15):5061-73.

[64]

Trolliard G, Dorcet V. Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: second order orthorhombic to tetragonal phase transition. Chem Mater 2008;20(15):5074-82.

[65]

Dorcet V, Trolliard G. A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta Mater 2008;56(8):1753-61.

[66]

Vakhrushev SB, Isupov VA, Kvyatkovsky BE, Okuneva NM, Pronin IP, Smolensky GA, et al. Phase transitions and soft modes in sodium bismuth titanate. Ferroelectrics 1985;63(1):153-60.

[67]

Glazounov AE, Tagantsev AK. Direct evidence for Vögel-Fulcher freezing in relaxor ferroelectrics. Appl Phys Lett 1998;73(6):856-8.

[68]

Rao BN, Datta R, Chandrashekaran SS, Mishra DK, Sathe V, Senyshyn A, et al. Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys Rev B 2013;88(22):224103.

[69]

Bokov AA, Ye ZG. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41(1):31-52.

[70]

Buhrer CF. Some properties of bismuth perovskites. J Chem Phys 1962;36(3):798-803.

[71]

Takenaka T, Sakata KO, Toda KO. Piezoelectric properties of (Bi1/2Na1/2)TiO3-based ceramics. Ferroelectrics 1990;106(1):375-80.

[72]

Suchanicz J, Kluczewska-Chmielarz K, Sitko D, Jaglo G. Electrical transport in lead-free Na0.5Bi0.5TiO3 ceramics. J Adv Ceram 2021;10(1):152-65.

[73]

Yang Z, Du H, Jin L, Poelman D. High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J Mater Chem 2021;9(34):18026-85.

[74]

Jia W, Hou Y, Zheng M, Xu Y, Zhu M, Yang K, et al. Advances in lead-free high-temperature dielectric materials for ceramic capacitor application. IET Nanodielectrics 2018;1(1):3-16.

[75]

Xu Q, Song Z, Tang W, Hao H, Zhang L, Millicent Appiah, et al. Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3-NaNbO3 system. J Am Ceram Soc 2015;98(10):3119-26.

[76]

Benyoussef M, Zannen M, Belhadi J, Bouchaib Manoun, Dellis J-L, Marssi ME, et al. Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics. Ceram Int 2018;44(16):19451-60.

[77]

Ruth DEJ, Muneeswaran M, Giridharan NV, Sundarakannan B. Enhanced electrical properties in Rb-substituted sodium bismuth titanate ceramics. Appl Phys A 2016;122(5):502.

[78]

Pal V, Dwivedi RK. Effect of rare earth Gadolinium substitution on the structural, microstructure and dielectric properties of lead free BNT ceramics. Adv Mater Res 2012;585:200-4.

[79]

Zannen M, Lahmar A, Khemakhem H, Marssi ME. Energy storage property in lead free Gd doped Na1/2Bi1/2TiO3 ceramics. Solid State Commun 2016;245:1-4.

[80]

Kumar A, Asthana S. Investigation on energy storage properties and thermally stable dielectric constant for high temperature electronic device applications in the holmium substituted Na0.5Bi0.5TiO3. J Mater Sci Mater Electron 2021;32(15):20225-39.

[81]

Xiao DQ, Lin DM, Zhu JG, Yu P. Investigation on the design and synthesis of new systems of BNT-based lead-free piezoelectric ceramics. J Electroceram 2006;16(4):271-5.

[82]

Zhang A, Jing R, Zhuang M, Hou H, Zhang L, Zhang J, et al. Nonstoichiometric effect of A-site complex ions on structural, dielectric, ferroelectric, and electrostrain properties of bismuth sodium titanate ceramics. Ceram Int 2021;47(23):32747-55.

[83]

Park SE, Hong KS. Variations of structure and dielectric properties on substituting A-site cations for Sr2+ in (Na1/2Bi1/2) TiO3. J Mater Res 1997;12(8):2152-7.

[84]

Oh T, Kim MH. Phase relation and dielectric properties in (Bi1/2Na1/2)1-xBax-TiO3 lead-free ceramics. Mater Sci Eng B 2006;132(3):239-46.

[85]

Han F, Deng J, Liu X, Yan T, Ren S, Ma X, et al. High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram Int 2017;43(7):5564-73.

[86]

Razak KA, Song WC, Ng CY. Properties of Ce-doped Bi0.5Na0.5TiO3 synthesized using the soft combustion method. Procedia Chem 2016;19:816-21.

[87]

Muhammed KR, Scrimshire A, Sterianou I, Bell AMT, Bingham PA. Physical properties and sinterability of pure and iron-doped bismuth sodium titanate ceramics. J Australas Ceram Soc 2020;56(4):1441-9.

[88]

Rachakom A, Jiansirisomboon S, Watcharapasorn A. Effect of poling on piezoelectric and ferroelectric properties of Bi0.5Na0.5Ti1-xZrxO3 ceramics. J Electroceram 2014;33(1):105-10.

[89]

Pradhani N, Mahapatra PK, Choudhary RNP, Jena AK, Mohanty J. Investigation on the effect of Mn substitution on the structural, electrical and ferroelectric characteristics of Bi0.5Na0.5TiO3 ceramic. Mater Res Bull 2019;119:110566.

[90]

Zhou C-R, Liu X-Y. Effect of B-site substitution by (Ni1/3Nb2/3)4+ for Ti4+ on microstructure and piezoelectric properties in (Bi1/2Na1/2)TiO3 piezoelectric ceramics. J Alloys Compd 2008;466(1–2):563-7.

[91]

Cheng R, Duan Y, Chu R, Hao J, Du J, Xu Z, et al. Investigation of structural and electrical properties of B-site complex ion (Nd1/2Ta1/2)4+-doped Bi1/2Na1/2TiO3 lead-free piezoelectric ceramic. J Mater Sci Mater Electron 2015;26(7):5409-15.

[92]

Shi J, Liu X, Tian W. Structure evolution and ferroelectric properties in stoichiometric Bi0.5+xNa0.5-xTi1-0.5xO3. J Mater Sci 2019;54(7):5249-55.

[93]

Zuo R, Wang H, Ma B, Li L. Effects of Nb5+ doping on sintering and electrical properties of lead-free (Bi0.5Na0.5)TiO3 ceramics. J Mater Sci Mater Electron 2009;20(11):1140-3.

[94]

Qiao Y, Li W, Zhang Y, Jing L, Yang X, Gao C, et al. Ba and Mg co-doping to suppress high-temperature dielectric loss in lead-free Na0.5Bi0.5TiO3-based systems. J Eur Ceram Soc 2020;40(3):720-7.

[95]

Kakroo S, Kumar A, Mishra SK, Singh Vijay, Singh Pr K. The effect of CuO and NiO doping on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 lead-free ceramics. Phase Transitions 2016;89(3):211-20.

[96]

Pu Y, Zhang L, Cui Y, Chen M. High energy storage density and optical transparency of microwave sintered homogeneous (Na0.5Bi0.5)(1-x)BaxTi(1–y)SnyO3 ceramics. ACS Sustainable Chem Eng 2018;6(5):6102-9.

[97]

Huang Y, Zhang L, Jing R, Hu Q, Alikin DO, Shur VY, et al. Thermal stability of dielectric and energy storage performances of Ca-substituted BNTZ ferroelectric ceramics. Ceram Int 2021;47(5):6298-309.

[98]

Yan F, Zhou X, He X, Bai H, Wu S, Shen B, et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 2020;75:105012.

[99]

Ren P, Zhao H, Wang X, Wan Y, Liu Z, Long C, et al. Super-stable permittivity and low dielectric loss of (1-x)Na0.5Bi0.5+yTiO3-xNaTaO3 ceramics within an ultra-wide temperature range. J Materiomics 2023;9(3):482-91.

[100]

Silva Jr PS, Diaz J, Florêncio O, Venet M, M'Peko JC. Analysis of the phase transitions in BNT-BT lead-free ceramics around morphotropic phase boundary by mechanical and dielectric spectroscopies. Arch Metall Mater 2016;61(1):17-20.

[101]

Xu Z, Hao X, An S. Structure and dielectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J Mater Sci Mater Electron 2015;26(6):4318-24.

[102]

Xue G, Wu Q, Li G, Lin H, Liu G, Chen Y, et al. The dielectric and ferroelectric properties of (Ba0.5Sr0.5)TiO3-doped (Bi0.5Na0.5)TiO3 lead-free ceramics. J Adv Dielectr 2017;7(4):1750028.

[103]

Otoničar M, Škapin SD, Spreitzer M, Suvorov D. Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system. J Eur Ceram Soc 2010;30(4):971-9.

[104]

Pisitpipathsin N, Koontasing W, Eitssayeam S, Intatha U, Rujijanagul G, Pengpat K, et al. Morphotropic phase boundary of lead-free piezoelectric ceramics from BNT-KN system. Adv Mater Res 2008;55:225-8.

[105]

Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, et al. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C 2020;8(47):16648-67.

[106]

Chen J, Li Y, Teng P, Wu L. Electric-field-temperature phase diagram and the properties of AgNbO3-modified Bi0.5Na0.5TiO3. Ferroelectrics 2017;520(1):118-25.

[107]

Sareein T, Unruan M, Ngamjarurojana A, Supon Ananta, Rattikorn Yimnirun. Effects of compressive stress on dielectric properties of lead-free (Bi1/2Na1/2)TiO3-(K1/2Na1/2)NbO3 ceramic systems. Key Eng Mater 2009;863(421):54.

[108]

Niu X, Jian X, Gong W, Liang GW, Gong X, Zhang G, et al. Field-driven merging of polarizations and enhanced electrocaloric effect in BaTiO3-based lead-free ceramics. J Adv Ceram 2022;11(11):1777-88.

[109]

Wang H, Zhao P, Chen L, Li L, Wang X. Energy storage properties of 0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers. J Adv Ceram 2020;9:292-302.

[110]

Wohninsland A, Fetzer AK, Broughton R, Jones JL, Lalitha KV. Structural and microstructural description of relaxor-ferroelectric transition in quenched Na1/2Bi1/2TiO3-BaTiO3. J Materiomics 2022;8(4):823-32.

[111]

Takenaka T, Sakata KO, Toda KO. Piezoelectric properties of (Bi1/2Na1/2)TiO3-based ceramics. Ferroelectrics 1990;106(1):375-80.

[112]

Ma C, Tan X. Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. Solid State Commun 2010;150(33–34):1497-500.

[113]

Ma C, Tan X. In situ transmission electron microscopy study on the phase transitionsin lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Am Ceram Soc 2011;94(11):4040-4.

[114]

Ma C, Tan X, Dul'Kin E, Roth M. Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 2010;108(10):104105.

[115]

Guo Y, Gu M, Luo H, Liu Y, Withers RL. Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1-xO3(1-x)-xBaTiO3 ceramics. Phys Rev B 2011;83(5):054118.

[116]

Li Q, Zhou C, Xu J, Yang L, Zhang X, Zeng W, et al. Tailoring antiferroelectricity with high energy-storage properties in Bi0.5Na0.5TiO3-BaTiO3 ceramics by modulating Bi/Na ratio. J Mater Sci Mater Electron 2016;27(10):10810-5.

[117]

Prado A, Ramajo L, Camargo J, Campo AD, Öchsner P, Rubio-Marcos F, et al. Stabilization of the morphotropic phase boundary in (1-x)Bi0.5Na0.5TiO3-xBaTiO3 ceramics through two alternative synthesis pathways. J Mater Sci Mater Electron 2019;30(20):18405-12.

[118]

Badapanda T, Sahoo S, Nayak P. Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region. Conf Ser: Mater Sci Eng 2017;178(1):012032.

[119]

Borkar H, Singh VN, Tomar M, Gupta V, Kumar A. Room Temperature lead-free relaxor-antiferroelectric electroceramics for energy storage applications. RSC Adv 2014;4(44):22840-7.

[120]

Li X, Hao X, An S, Li Y, Zhang Q. Enhanced energy storage in Sn-doped sodium bismuth titanate lead-free relaxor ferroelectric ceramics. J Mater Sci Mater Electron 2022;33(8):5265-72.

[121]

Chen L, Wang H, Zhao P, Hui K, Guo L, Long Li, et al. High permittivity and excellent high-temperature energy storage properties of X9R BaTiO3-(Bi0.5Na0.5)TiO3 ceramics. J Am Ceram Soc 2020;103(2):1113-20.

[122]

Li L, Xu M, Zhang Q, Chen P, Wang N, Xiong D, et al. Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceram Int 2018;44(1):343-50.

[123]

Chu B, Hao J, Li P, Li Y, Li W, Zheng L, et al. High-energy storage properties over a broad temperature range in La-modified BNT-Based lead-free ceramics. ACS Appl Mater Interfaces 2022;14(17):19683-96.

[124]

Xu J, Lu X, Yang L, Zhou C, Zhao Y, Zhang H, et al. Enhanced electrical energy storage properties in La-doped (Bi0.5Na0.5)0.93Ba0.07TiO3lead-free ceramics by addition of La2O3 and La(NO3)3. J Mater Sci 2017;52(1):1-11.

[125]

Huang Y, Li F, Hao H, Xia F, Liu H, Zhang S. Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 2019;5(3):385-93.

[126]

Yan B, Fan H, Wang C, Zhang M, Yadav AK, Zheng X, et al. Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram Int 2020;46(1):281-8.

[127]

Yang Y, Wang H, Bi L, Zheng Q, Fan G, Jie W, et al. High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. J Eur Ceram Soc 2019;39(10):3051-6.

[128]

Pang S, Yang L, Qin J, Qin H, Xie H, Wang H, et al. Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+complex-ions doped BNT-BT ceramics. Appl Phys A 2019;125(2):119.

[129]

Sun Y, Zhao Y, Xu J, Yang L, Zhou C, Rao G, et al. Phase transition, large strain and energy storage in ferroelectric (Bi0.5Na0.5)TiO3-BaTiO3 ceramics tailored by (Mg1/3Nb2/3)4+ complex ions. J Electron Mater 2020;49(2):1131-41.

[130]

Lu X, Xu J, Yang L, Zhou C, Zhao Y, Yuan C, et al. Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. J Materiomics 2016;2(1):87-93.

[131]

Wang H, Li Q, Jia Y, Yadav AK, Yan B, Shen Q, et al. Enhanced dielectric temperature stability and energy-storage properties of (Y0.5Nb0.5)4+ co-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free relaxor ceramics. J Mater Sci 2021;56(26):14672-83.

[132]

Hu B, Fan H, Ning L, Ning L, Wen Y, Wang C. High energy storage performance of [(Bi0.5Na0.5)0.94Ba0.06]0.97La0.03Ti1-x(Al0.5Nb0.5)xO3 ceramics with enhanced dielectric breakdown strength. Ceram Int 2018;44(13):15160-6.

[133]

Yuan Y, Zhou X-H, Zhao C-J, Li B, Zhang S-R. High-temperature capacitor based on Ca-doped Bi0.5Na0.5TiO3-BaTiO3 ceramics. J Electron Mater 2010;39(11):2471-5.

[134]

Chen L, Li F, Gao B, Zhou C, Wu J, Deng S, et al. Excellent energy storage and mechanical performance in hetero-structure BaTiO3-based relaxors. Chem Eng J 2023;452:139222.

[135]

Xu Q, Liu H, Zhang L, Xie J, Hao H, Cao M, et al. Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications. RSC Adv 2016;6(64):59280-91.

[136]

Xu Q, Lanagan MT, Huang X, Xie J, Zhang L, Hao H, et al. Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage. Ceram Int 2016;42(8):9728-36.

[137]

Chen P, Chu B. Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics. J Eur Ceram Soc 2016;36(1):81-8.

[138]

Li L, Zhu M, Wei Q, Zheng M, Hou Y, Hao J. Ferroelectric P4mm to relaxor P4bm transition and temperature-insensitive large strains in Bi(Mg0.5Ti0.5)O3-modified tetragonal 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 lead-free ferroelectric ceramics. J Eur Ceram Soc 2018;38(4):1381-8.

[139]

Guo B, Yan Y, Tang M, Wang Z, Li Y, Zhang L, et al. Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chem Eng J 2021;420(3):130475.

[140]

Yan Y, Qin W, Wang X, Li Z, Zhang D, Zhang M, et al. Enhanced energy storage in temperature stable Bi0.5Na0.5TiO3-modified BaTiO3-Bi(Zn2/3Nb1/3)O3 ceramics. Ceram Int 2022;48(24):36478-89.

[141]

Chen Y, Wang Y, Zhao D, Wang H, He X, Zheng Q, et al. Enhanced energy storage properties and dielectric stabilities in BNT-based ceramics via multiphase and dielectric peak broadening engineering. Mater Chem Phys 2022;290:126542.

[142]

Lin Q, Deng Z, Dou W, Wu Y, Ma Y. Enhancement of energy storage performance in NaNbO3 and Sm3+ modified BNT-based ceramics. Ceram Int 2022;48(23):34688-96.

[143]

Liu Z, Ren P, Long C, Wang C, Wan Y, Zhao G. Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J Alloys Compd 2017;721:538-44.

[144]

Wan Y, Hou N, Ren P, Ma M, Song K, Yan F, et al. High temperature energy storage properties of Bi0.5Na0.5TiO3 based ceramics modified by NaNbO3. J Alloys Compd 2021;888:161591.

[145]

Wang H, Yuan H, Li X, Zeng F, Wu K, Zheng Q, et al. Enhanced energy density and discharged efficiency of lead-free relaxor (1-x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3-xKNb0.6Ta0.4O3 ceramic capacitors. Chem Eng J 2020;394:124879.

[146]

Shi P, Zhu X, Lou X, Yang B, Liu Q, Kong C, et al. Tailoring ferroelectric polarization and relaxation of BNT-based lead-free relaxors for superior energy storage properties. Chem Eng J 2022;428:132612.

[147]

Shen Y, Wu L, Zhao J, Liu J, Tang L, Chen X, et al. Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering. Chem Eng J 2022;439:135762.

[148]

Li F, Yang K, Liu X, Zou J, Zhai J, Shen B, et al. Temperature induced high charge-discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics. Scripta Mater 2017;141:15-9.

[149]

Ye H, Yang F, Pan Z, Hu D, Lv X, Chen H, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater 2021;203:116484.

[150]

Malathi AR, Devi CS, Kumar GS, Vithal M, Prasad G. Dielectric relaxation in NBT-ST ceramic composite materials. Ionics 2013;19(12):1751-60.

[151]

Zhou X, Yang H, Xue G, Luo H, Zhang D. Optimized strain performance in <001>-textured Bi0.5Na0.5TiO3-based ceramics with ergodic relaxor state and core-shell microstructure. J Adv Ceram 2022;11(10):1542-58.

[152]

Liu G, Dong J, Zhang L, Yan Y, Jing R, Jin L. Phase evolution in (1-x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: a study focusing on dielectric and ferroelectric characteristics. J Materiomics 2020;6(4):677-91.

[153]

Supriya S. A critical review on crystal structure mechanisms, microstructural and electrical performances of Bi0.5Na0.5TiO3-SrTiO3 perovskites. J Electroceram 2022;49(2):94-108.

[154]

Sakata K, Masuda Y. Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics. Ferroelectrics 1974;7(1):347-9.

[155]

Yan F, Huang K, Jiang T, Zhou X, Shi Y, Ge G, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater 2020;30:392-400.

[156]

Luo W-Q, Shen Z-Y, Yu Y-Y, Song F-S, Wang Z-M, Li Y-M. Structure and dielectric properties of NBT-xBT-ST lead-free ceramics for energy storage. J Adv Dielectr 2018;8(6):1820004.

[157]

Su Q, Zhu J, Ma Z, Meng X, Zhao Y, Li Y, et al. Enhanced energy-storage properties and charge-discharge performances in Sm3+ modified (Na0.5Bi0.5)TiO3-SrTiO3 lead-free relaxor ferroelectric ceramics. Mater Res Bull 2022;148:111675.

[158]

Li D, Zhou D, Liu W, Wang P, Guo Y, Yao X, et al. Enhanced energy storage properties achieved in Na0.5Bi0.5TiO3-based ceramics via composition design and domain engineering. Chem Eng J 2021;419:129601.

[159]

Qiao X, Chao X, Yang Z. Bi0.5Na0.5TiO3-based ceramics with high energy storage density and good thermal stability. J Mater Sci Mater Electron 2022;33(4):2012-9.

[160]

Ullah A, Ullah M, Ullah A, Ullah A, Saddiq G, Ullah B, et al. Dielectric and electromechanical properties of Zr-doped BNT-ST lead-free piezoelectric ceramics. J Kor Phys Soc 2019;74(6):589-94.

[161]

Qiao X, Liao A, Chen B, Zhang H, Zhang L, Kong T, et al. Enhanced energy storage properties of BNT-based ceramics via composition and multiscale structural engineering. Solid State Sci 2022;136:107090.

[162]

Kang R, Wang Z, Lou X, Liu W, Shi P, Zhu X, et al. Energy storage performance of Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics with superior temperature stability under low electric fields. Chem Eng J 2021;410:128376.

[163]

Zhang X, Yang F, Miao W, Su Z, Zhao J, Tang L, et al. Effective improved energy storage performances of Na0.5Bi0.5TiO3-based relaxor ferroelectrics ceramics by A/B-sites co-doping. J Alloys Compd 2021;883(3):160837.

[164]

Lu Y, Li P, Du J, Hu C, Hao J, Zeng H, et al. High energy storage performance with good temperature stability in ST-modified BNT-based ceramics. SSRN 2022;27:4209929 Available at:.

[165]

Kang R, Wang Z, Yang W, Zhu X, He L, Gao Y, et al. Enhanced energy storage performance in Sr0.7La0.2Zr0.15Ti0.85O3-modified Bi0.5Na0.5TiO3 ceramics via constructing local phase coexistence. Chem Eng J 2022;446(1):137105.

[166]

Huang N, Liu H, Hao H, Yao Z, Cao M, Xie J. Energy storage properties of MgO-doped 0.5Bi0.5Na0.5TiO3-0.5SrTiO3 ceramics. Ceram Int 2019;45(12):14921-7.

[167]

Tang L, Pan Z, Zhao J, Shen Y, Chen X, Li H, et al. Significantly enhanced energy storage capability of BNT-based ceramics via optimized sintering aids. J Alloys Compd 2023;935:168124.

[168]

Tong X-Y, Yang Y-T, Song M-W, Zhou J-J, Wang K, Guan C-L, et al. Energy-storage properties of low-temperature Co-fired BNT-ST/AgPd multilayer lead-free ceramic capacitors. J Alloys Compd 2020;827:154260.

[169]

Chen X, Zhang D, Liu H, Zhou C, Shen M, Liu P, et al. Enhanced energy storage performance of BNT-ST based ceramics under low electric field via domain engineering. Ceram Int 2022;48(21):31381-8.

[170]

Bilal MK, Bashir R, Asif SU, Wang J, Hu W. Enhanced energy storage properties of 0.7Bi0.5Na0.5TiO3-0.3SrTiO3 ceramic through the addition of NaNbO3. Ceram Int 2021;47(21):30922-8.

[171]

Kornphom C, Saenkam K, Bongkarn T. Enhanced energy storage properties of BNT-ST-AN relaxor ferroelectric ceramics fabrication by the solid-state combustion technique. Phys Status Solidi A 2022:2200240.

[172]

Shi P, Zhu L, Gao W, Yu Z, Lou X, Wang X, et al. Large energy storage properties of lead-free (1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBiAlO3 ceramics at broad temperature range. J Alloys Compd 2019;784:788-93.

[173]

Yang F, Wang H, Li Q, Yadav AK, Fan H. High energy storage density and temperature-stable dielectric properties for (1-x)Bi0.38Na0.38Sr0.24TiO3-xBaSnO3 lead-free relaxor ceramics. Ceram Int 2021;47(23):33162-71.

[174]

Feng Q, Liu X, Yuan C, Liu X, Zhou C, Chen G. Enhanced energy storage properties of Bi0.5Li0.5TiO3 modified Sr0.1Bi0.45Na0.45TiO3 based ceramics. J Adv Ceram 2016;5:219-24.

[175]

Gao Y, Zhu X, Yang B, Shi P, Kang R, Yuan Y, et al. Grain size modulated (Na0.5Bi0.5)0.65Sr0.35TiO3-based ceramics with enhanced energy storage properties. Chem Eng J 2022;433:133584.

[176]

Zhu X, Shi P, Gao Y, Kang R, Zhao J, Xiao A, et al. Enhanced energy storage performance of 0.88(0.65Bi0.5Na0.5TiO3-0.35SrTiO3)-0.12Bi(Mg0.5Hf0.5)O3 lead-free relaxor ceramic by composition design strategy. Chem Eng J 2022;437:135462.

[177]

Yang H, Tian J, Lin Y, Ma J. Realizing ultrahigh energy storage density of lead-free 0.76Bi0.5Na0.5TiO3-0.24SrTiO3-Bi(Ni2/3Nb1/3)O3 ceramics under low electric fields. Chem Eng J 2021;418:129337.

[178]

Su Q, Ma Z, Zhu J, Sun N, Zhao Y, Lu C, et al. Excellent energy-storage performance in BNT-SST-LMN lead-free relaxor ferroelectric ceramics with high electrical homogeneity. ACS Appl Energy Mater 2022;5:15247-56.

[179]

Hu D, Pan Z, Wu L, Yang F, Tang L, Zhao J, et al. Optimization of synergistic energy storage density and efficiency for eco-friendly (Na0.5Bi0.5)0.6Sr0.4TiO3-based relaxor ferroelectric ceramics. J Materiomics 2021;7(4):869-78.

[180]

Yao K, Zhou C, Wang J, Tan Y, Li Q, Yuan C, et al. Bi0.5Na0.5TiO3-Sr0.85Bi0.1TiO3 ceramics with high energy storage properties and extremely fast discharge speed via regulating relaxation temperature. Ceram Int 2021;47(8):11294-303.

[181]

Tang L, Pan Z, Zhao J, Shen Y, Chen X, Li H, et al. Nanoscale grain sizes in BNT-based ceramics with superb energy storage performances via coating boron nitride nanosheets. Chem Eng J 2022:140524.

[182]

Li Q, Yao Z, Ning L, Gao S, Hu B, Dong G, et al. Enhanced energy-storage properties of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 lead-free ceramics. Ceram Int 2018;44(3):2782-8.

[183]

Zhao N, Fan H, Ning L, Ma J, Zhou Y. Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics. J Am Ceram Soc 2018;101(12):5578-85.

[184]

Zhao M, Xia W, Liang Y, Zhang X, Lu D, Feng Y. Ba(Zr0.3Ti0.7)O3 doping to enhance the dielectric and energy discharging performances of a 0.65Bi0.5Na0.5TiO3-0.35Sr0.7Bi0.2TiO3 lead-free ceramic. J Mater Sci Mater Electron 2022;33(27):21702-12.

[185]

Ji H, Wang D, Bao W, Lu Z, Wang G, Yang H, et al. Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater 2021;38:113-20.

[186]

Wang Q, Xie B, Zheng Q, Marwat MA, Liu Z, Mao P, et al. Bi0.5Na0.5TiO3-based relaxor-ferroelectric ceramics for low-electric-field dielectric energy storage via bidirectional optimization strategy. Chem Eng J 2023;452:139422.

[187]

Liu RS, Cheng YC, Chen JM, Liu RG, Wang JL, Tsai JC, et al. Crystal and electronic structures of (Ba,Sr)TiO3. Mater Lett 1998;37(4–5):285-9.

[188]

Zhou L, Vilarinho PM, Baptista JL. Dependence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing. J Eur Ceram Soc 1999;19(11):2015-20.

[189]

Shirokov VB, Torgashev VI, Bakirov AA, Lemanov VV. Concentration phase diagram of BaxSr1-xTiO3 solid solutions. Phys Rev B 2006;73(10):104116.

[190]

Lee WC, Huang CY, Tsao LK, Wu YC. Crystal structure, dielectric and ferroelectric properties of (Bi0.5Na0.5)TiO3-(Ba,Sr)TiO3 lead-free piezoelectric ceramics. J Alloys Compd 2010;492(1–2):307-12.

[191]

Gorzkowski EP, Pan MJ, Bender BA, Wu CCM. Effect of additives on the crystallization kinetics of barium strontium titanate glass-ceramics. J Am Ceram Soc 2008;91(4):1065-9.

[192]

Kaur A, Singh L, Asokan K. Electrical relaxation and conduction mechanisms in iron doped barium strontium titanate. Ceram Int 2018;44(4):3751-9.

[193]

Mudinepalli VR, Feng L, Lin W-C, Murty BS. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. J Adv Ceram 2015;4:46-53.

[194]

Attar AS, Sichani ES, Sharafi S. Structural and dielectric properties of Bi-doped barium strontium titanate nanopowders synthesized by sol-gel method. J Mater Res Technol 2017;6(2):108-15.

[195]

Gao L, Guan Z, Huang S, Liang K, Chen H, Zhang J. Enhanced dielectric properties of barium strontium titanate thin films by doping modification. J Mater Sci Mater Electron 2019;30(14):12821-39.

[196]

Wang J, Tang L, Shen B, Zhai J. Property optimization of BST-based composite glass ceramics for energy-storage applications. Ceram Int 2014;40(1):2261-6.

[197]

Niu X, Jian X, Chen X, Li H, Liang W, Yao Y, et al. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement. J Adv Ceram 2021;10(3):482-92.

[198]

Xue G, Wu Q, Li G, Lin H, Liu Gang, Chen Y, et al. The dielectric and ferroelectric properties of (Ba0.5Sr0.5)TiO3-doped(Bi0.5Na0.5)TiO3 lead-free ceramics. J Adv Dielectr 2017;7(4):1750028.

[199]

Zhang H, Yang B, Fortes AD, Yan H, Abrahams I. Structure and dielectric properties of double A-site doped bismuth sodium titanate relaxor ferroelectrics for high power energy storage applications. J Mater Chem 2020;8(45):23965-73.

[200]

Yang F, Chen Y, Li X, Huang W, Wang G, Dong X. Designing lead-free Barium Strontium Titanate-based weakly coupled relaxor ferroelectric ceramics with simultaneous high energy density and efficiency via Bi3+ lone pair covalent effect. Ceram Int 2021;47(18):25785-93.

[201]

Li D, Shen Z-Y, Li Z, Wang X, Luo WQ, Song F, et al. Structural evolution, dielectric and ferroelectric properties of (1-x)Bi0.5Na0.5TiO3-xBa0.3Sr0.7TiO3 ceramics. J Mater Sci Mater Electron 2019;30(6):5917-22.

[202]

Li D, Shen Z-Y, Li Z, Luo W, Wang X, Wang Z, et al. P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J Adv Ceram 2020;9(2):183-92.

[203]

Ruan T, Yuan J, Xu J, Liu Y, Lyu Y. Enhanced large field-induced strain and energy storage properties of Sr0.6La0.2Ba0.1TiO3-modified Bi0.5Na0.5TiO3 relaxor ceramics. J Mater Sci Mater Electron 2022;33(19):15779-90.

[204]

Zhu W, Deng W, Li Z, Shen Z-Y, Shi X, Song F, et al. Broadening the dielectric stability temperature range of BNBST relaxor ferroelectric ceramics by rare earth Ce doping for energy storage. J Mater Sci Mater Electron 2022;33(36):26861-9.

[205]

Wang X, Wu X, Yang D, Yin J, Wu J. Achieving superior energy-storage efficiency by tailoring the state of polar nano-sized regions under low electric fields. Chem Eng J 2022;447:137494.

[206]

Li D, Shen Z-Y, Li Z, Wang X, Luo WQ, Song F, et al. Effect of (Nb2/3Mg1/3)4+ complex on the dielectric and ferroelectric properties of (Ba0.3Sr0.7)0.35(Bi0.5Na0.5)0.65TiO3 ceramics for energy storage. J Mater Sci Mater Electron 2020;31(4):3648-53.

[207]

Li Z, Li D, Shen Z, Luo WQ, Song F, Wang Z, et al. Effect of (Zn1/3/Nb2/3)4+ complex on energy storage characteristics of BNBST ceramics. J Ceram 2021;42(3):414-22.

[208]

Liu J, Song F, Shen Z-Y, Shi X, Li Z, Luo W, et al. Mg1/3Ta2/3)4+ complex ion modified BNBST relaxor ferroelectric ceramics for energy storage applications. Mater. Lab 2022;2:220057.

[209]

Li D, Shen Z-Y, Li Z, Luo WQ, Song F, Wang X, et al. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors. J Mater Chem C 2020;8(23):7650-7.

[210]

Jiang Z, Yang Z, Yuan Y, Tang B, Zhang S. High energy storage properties and dielectric temperature stability of (1-x)(0.8Bi0.5Na0.5TiO3-0.2Ba0.3Sr0.7TiO3)-xNaNbO3 lead-free ceramics. J Alloys Compd 2021;851:156821.

[211]

Jiang Z, Yang H, Cao L, Yang Z, Yuan Y, Li E. Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3-based ceramic by reducing the oxygen vacancy concentration. Chem Eng J 2021;414:128921.

[212]

Wang Y, Wang T, Wang J, Liu J, Xing Z, Yang H, et al. A-site compositional modulation in barium titanate based relaxor ceramics to achieve simultaneously high energy density and efficiency. J Eur Ceram Soc 2021;41(13):6474-81.

[213]

Kang R, Wang Z, Liu W, He L, Zhu X, Shi P, et al. Domain engineered lead-free ceramics with large energy storage density and ultrahigh efficiency under low electric fields. ACS Appl Mater Interfaces 2021;13(21):25143-52.

[214]

Li Z, Li DX, Shen ZY, Zeng X, Song F, Luo W, et al. Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications. J Adv Ceram 2022;11(2):283-94.

[215]

Zhao W, Zhou HP, Yan YK, Liu D. Morphotropic phase boundary study of the BNT-BKT lead-free piezoelectric ceramics. Key Eng Mater 2008;368:190810.

[216]

Hernandez-Cuevas G, Leyva Mendoza JR, García Casillas PE, Rodríguez González CA, Hernandez-Paz JF, Herrera-Pérez G, et al. Effect of the sintering technique on the ferroelectric and d33 piezoelectric coefficients of Bi0.5(Na0.84K0.16)0.5TiO3 ceramic. J Adv Ceram 2019;8:278-88.

[217]

Jiang B, Raeder TM, Lin D-Y, Grande T, Selbach SM. Structural disorder and coherence across the phase transitions of lead-free piezoelectric Bi0.5K0.5TiO3. Chem Mater 2018;30(8):2631-40.

[218]

Niu Z, Zheng P, Xiao Y, Luo C, Zhang K, Zhang J, et al. Bi0.5K0.5TiO3-based lead-free relaxor ferroelectric with high energy storage performances via the grain size and bandgap engineering. Mater Today Chem 2022;24:100898.

[219]

Otoničar M, Škapin SD, Spreitzer M, Suvorov D. Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system. J Eur Ceram Soc 2010;30(4):971-9.

[220]

Isupov VA. Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions. Ferroelectrics 2005;315(1):123-47.

[221]

Hiruma Y, Nagata H, Takenaka T. Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. J Appl Phys 2008;104(12):124106.

[222]

Elkechai O, Manier M, Mercurio JP. Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3(NBT-KBT) system: a structural and electrical study. Phys Status Solidi 1996;157(2):499-506.

[223]

Li Y, Chen W, Zhou J, Xua Q, Sun H, Liao Mei. Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 ferroelectric ceramics. Ceram Int 2005;31(1):139-42.

[224]

Wu Y, Wang G, Jiao Z, Fan Y, Peng P, Dong X. High electrostrictive properties and energy storage performances with excellent thermal stability in Nb-doped Bi0.5Na0.5TiO₃-based ceramics. RSC Adv 2019;9(37):21355-62.

[225]

Yang W, Uddin S, Zaman A, Zheng G. The influences of B-site doping on ferroelectric and energy-storage properties of Bi0.5(Na0.82K0.18)0.5TiO3-LiSbO3 ceramics. Phys Scripta 2022;97(8):085404.

[226]

Butnoi P, Manotham S, Jaita P, Randron C, Rujijanaugl G. High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr. J Eur Ceram Soc 2018;38(11):3822-32.

[227]

Zhao Y, Xu J, Yang L, Zhou C, Lu X, Yuan C, et al. High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex-ion. J Alloys Compd 2016;666:209-16.

[228]

Yang F, Li Q, Zhang A, Jia Y, Sun Y, Wang W, et al. High energy storage density and temperature stable dielectric properties of (1-x) Bi0.5(Na0.82K0.18)0.5Ti0.99(Y0.5Nb0.5)0.01O3-xNaNbO3 ceramics. J Alloys Compd 2022;925:166782.

[229]

Bai W, Li L, Li W, Shen B, Zhai J, Chen H. Effect of SrTiO3 template on electric properties of textured BNT-BKT ceramics prepared by templated grain growth process. J Alloys Compd 2014;603:149-57.

[230]

Yu Z, Liu Y, Shen M, Qian Hao, Li F, Lyu Y. Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram Int 2017;43(10):7653-9.

[231]

Li Q, Wang J, Liu Z, Dong G, Fan H. Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3-0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci 2016;51(2):1153-60.

[232]

Sumang R, Bongkarn T, Kumar N, Kamnoy M. Investigation of a new lead-free (1-xy)BNT-xBKT-yBZT piezoelectric ceramics. Ceram Int 2017;43:S102-9.

[233]

Manotham S, Butnoi P, Jaita P, Kumar N, Chokethawai K, Rujijanagul G, et al. Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium titanate-based piezoelectric ceramics. J Alloys Compd 2018;739:457-67.

[234]

Kumar N, Cann DP. Electromechanical strain and bipolar fatigue in Bi(Mg1/2Ti1/2)O3-(Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 ceramics. J Appl Phys 2013;114(5):054102.

[235]

Wang J, Jin Y, Peng F, Yao Y, Li X, Huang Y. Composition-driven (Bi0.5Na0.5)TiO3-based ceramics as novel high-performance energy storage materials for capacitor applications. J Mater Sci Mater Electron 2021;32(2):1842-9.

[236]

Yan B, Chen K, An L. Enhanced moderate electric field dielectric energy storage performance in (Bi0.5Na0.5)TiO3-based lead-free ceramics. Ceram Int 2022;48(24):37020-6.

[237]

Dittmer R, Anton EM, Jo W, Simons H, Daniels JE, Hoffman Mark, et al. A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3. J Am Ceram Soc 2012;95(11):3519-24.

[238]

Anton EM, Jo W, Trodahl J, Damjanovic D, Jürgen Rödel. Effect of K0.5Na0.5NbO3 on properties at and off the morphotropic phase boundary in Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3 ceramics. Jpn J Appl Phys 2011;50(5R):55802.

[239]

Zhao J, Cao M, Wang Z, Xu Q, Zhang L, Yao Z, et al. Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 lead-free ceramics. J Mater Sci Mater Electron 2016;27(1):466-73.

[240]

Hao J, Xu Z, Chu R, Li W, Du J, Fu P. Enhanced energy-storage properties of (1-x)[(1-y)(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3]-x(K0.5Na0.5)NbO3 lead-free ceramics. Solid State Commun 2015;204:19-22.

[241]

Hu D, Pan Z, Zhang X, Ye H, He Z, Wang M, et al. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics. J Mater Chem C 2020;8(2):591-601.

[242]

Pengpat K, Jarupoom P, Kantha P, Eitssayeam S, Intatha U, Rujijanagul G, et al. Phase formation and electrical properties of lead-free bismuth sodium titanate-potassium niobate ceramics. Curr Appl Phys 2008;8(3–4):241-5.

[243]

Fan G, Lu W, Wang X, Liang F, Xiao J. Phase transition behaviour and electromechanical properties of (Na1/2Bi1/2)TiO3-KNbO3 lead-free piezoelectric ceramics. J Phys D Appl Phys 2008;41(3):035403.

[244]

Sundarakannan B, Kakimoto K, Ohsato H. Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics. J Appl Phys 2003;94(8):5182-7.

[245]

Jiang X, Wang B, Luo L, Li W, Zhou J, Chen H. Electrical properties of (1-x)(Bi0.5Na0.5)TiO3-xKNbO3 lead-free ceramics. J Solid State Chem 2014;213:72-8.

[246]

Kantha P, Pisitpipathsin N. Effect of KNbO3 addition on diffuse phase transition and dielectric properties of Bi0.5Na0.5TiO3 ceramics. Integrated Ferroelectrics Int J 2018;187(1):129-37.

[247]

Huang J, Qi H, Gao Y, Xie A, Zhang Y, Li Y, et al. Expanded linear polarization response and excellent energy-storage properties in (Bi0.5Na0.5)TiO3-KNbO3 relaxor antiferroelectrics with medium permittivity. Chem Eng J 2020;398:125639.

[248]

Hu B, Fan H, Ning L, Gao S, Ya Z, Li Q. Enhanced energy-storage performance and dielectric temperature stability of (1-x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram Int 2018;44(9):10968-74.

[249]

Zhang X, Hu D, Pan Z, Lv X, He Z, Yang F, et al. Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem Eng J 2021;406:126818.

[250]

Cross LE. Electric double hysteresis in (KxNa1-x)NbO3 single crystals. Nature 1958;181(4603):178-9.

[251]

Zhang M-H, Fulanović L, Zhao C, Koruza J. Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage. J Materiomics 2023;1(9):1-18.

[252]

Jiang J, Li X, Li L, Guo S, Zhang J, Wang J, et al. Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency. J Materiomics 2022;8(2):295-301.

[253]

Dong X, Li X, Chen H, Dong Q, Wang J, Wang X, et al. Realizing enhanced energy storage and hardness performances in 0.90NaNbO3-0.10Bi(Zn0.5Sn0.5)O3 ceramics. J Adv Ceram 2022;11(5):729-41.

[254]

Zhang M-H, Ding H, Egert S, Zhao C, Villa L, Fulanović L, et al. Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states. Nat Commun 2023;14(1):1525.

[255]

Li Y, Chen W, Zhou J, Xu Q, Sun H, Xu R. Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3 ceramics. Mater Sci Eng, B 2004;112(1):5-9.

[256]

Qi H, Zuo R. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J Mater Chem 2019;7(8):3971-8.

[257]

Lu Y, Li P, Du J, Fu P, Hao J, Zeng H, et al. 1-x)Bi0.5Na0.47Li0.03TiO3-xNaNbO3 lead-free ceramics with superior energy storage performances and good temperature stability. Ceram Int 2022;48:24716-24.

[258]

Xu Q, Li T, Hao H, Zhang S, Wang Z, Cao M, et al. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J Eur Ceram Soc 2015;35(2):545-53.

[259]

Chen L, Wang N, Zhang Z, Yu H, Wu J, Deng S, et al. Local diverse polarization optimized comprehensive energy-storage performance in lead-free superparaelectrics. Adv Mater 2022;34(44):2205787.

[260]

Feng Y, Zhen Y, Jiang X, Yang Z, Qin Z, Yang W, et al. Optimized energy storage performance in NaNbO3-based ceramics via composition modification and micro-structure control. Ceram Int 2023;49(9):14135-44.

[261]

Peng P, Nie H, Zheng C, Wang G, Dong X. High-energy storage density in NaNbO3-modified (Bi0.5Na0.5)TiO3-BiAlO3-based lead-free ceramics under low electric field. J Am Ceram Soc 2021;104(6):2610-20.

[262]

Zhu C, Cai Z, Luo B, Guo L, Lia L, Wang X. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J Mater Chem 2020;8(2):683-92.

[263]

Chen Y, Huang Y, Zuo Y, Wang H, Liu K, Fan B, et al. Enhanced energy storage property achieved in Na0.5Bi0.5TiO3-based ferroelectric ceramics via composition design and grain size tuning. J Eur Ceram Soc 2022;42(15):6985-96.

[264]

Tang W, Xu Q, Liu H, Yao Z, Hao H, Cao M. High energy density dielectrics in lead-free Bi0.5Na0.5TiO3-NaNbO3-Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature. J Mater Sci Mater Electron 2016;27(6):6526-34.

[265]

Zhao X, Bai W, Ding Y, Wang L, Wu S, Zheng P, et al. Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics. J Eur Ceram Soc 2020;40(13):4475-86.

[266]

Zhu C, Cai Z, Guo L, Jiang Y, Li L, Wang X. Simultaneously achieved ultrastable dielectric and energy storage properties in lead-free Bi0.5Na0.5TiO3-based ceramics. ACS Appl Energy Mater 2022;5(2):1560-70.

[267]

Zhang C, Xiao W, Zeng F, Su D, Du K, Qiu S, et al. Superior energy-storage performance in 0.85Bi0.5Na0.5TiO3-0.15NaNbO3 lead-free ferroelectric ceramics via composition and microstructure engineering. J Mater Chem 2021;9(16):10088-94.

[268]

He T, Cao Z, Li G, Jia Y, Peng B. High efficiently harvesting visible light and vibration energy in (1-x)AgNbO3-xLiTaO3 solid solution around antiferroelectric-ferroelectric phase boundary for dye degradation. J Adv Ceram 2022;11(10):1641-53.

[269]

Zhou Y, Gao S, Huang J, Zhen Z, Zhao L. Energy storage performance and phase transition under high electric field in Na/Ta co-doped AgNbO3 ceramics. J Materiomics 2022;9(1):19-26.

[270]

Luo N, Han K, Cabral MJ, Liao X, Zhang S, Liao C, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat Commun 2020;11(1):4824.

[271]

Xu Y, Guo Y, Liu Q, Wang G, Bai J, Tian J, et al. High energy storage properties of lead-free Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 antiferroelectric ceramics. J Eur Ceram Soc 2020;40(1):56-62.

[272]

Che Z, Ma L, Luo G, Xu C, Cen Z, Feng Q, et al. Phase structure and defect engineering in (Bi0.5Na0.5)TiO3-based relaxor antiferroelectrics toward excellent energy storage performance. Nano Energy 2022;100:107484.

[273]

Wang H, Jiang X, Liu X, Yang R, Yang Y, Zheng Q, et al. An effective approach to achieve high energy storage density and efficiency in BNT-based ceramics by doping AgNbO3. Dalton Trans 2019;48(48):17864-73.

[274]

Chen C-S, Lin Z-Q, Montecillo R, Liao J-Y, Chen P-Y, Tu C-S. Improved energy storage in antiferroelectric AgNbO3-modulated 0.925Bi0.5Na0.5TiO3-0.075BaTiO3 relaxor ferroelectric ceramics. Ceram Int 2022;48(23):35452-60.

[275]

Ma W, Zhu Y, Marwat MA, Fan P, Xie B, Salamon D, et al. Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J Mater Chem C 2019;7(2):281-8.

[276]

Ma W, Fan P, Salamon D, Kongparakul S, Samart C, Zhang T, et al. Fine-grained BNT-based lead-free composite ceramics with high energy-storage density. Ceram Int 2019;45(16):19895-901.

[277]

Kornphom C, Saenkam K, Bongkarn T. High energy-storage performance under low electric fields and excellent temperature stability of KF-modified BNT-ST-AN relaxor ferroelectric ceramics. JOM 2022;74(12):4695-709.

[278]

Qiao X, Wu D, Zhang F, Chen B, Ren X, Liang P, et al. Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. J Mater Chem C 2019;7(34):10514-20.

[279]

Nie H, Jiao Y, Jin D, Wang X, Zheng Y, Liu G, et al. Improved dielectric energy storage performance of Na0.5Bi0.5TiO3-Sr0.7Nd0.2TiO3 lead-free ceramics by adding an appropriate amount of AgNbO3. Ceram Int 2022;48(21):31223-32.

[280]

Shen Z-Y, Zhen Y, Wang K, Li J-F. Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics. J Am Ceram Soc 2009;92(8):1748-52.

[281]

Shen Z-Y, Xu Y, Li J-F. Fabrication and electromechanical properties of microscale 1-3-type piezoelectric composites using (Na,K)NbO3-based Pb-free piezoceramics. J Appl Phys 2009;105(10):104103.

[282]

Huan Y, Wang X, Yang W, Hou L, Zheng M, Wei T, et al. Optimizing energy harvesting performance by tailoring ferroelectric/relaxor behavior in KNN-based piezoceramics. J Adv Ceram 2022;11(6):935-44.

[283]

Shen Z-Y, Wang K, Li J-F. Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na,K)NbO3 lead-free piezoceramics. Appl Phys A: Mater Sci Process 2009;97(4):911-7.

[284]

Yan T, Chen K, Li C, Liu M, Wang J, Fang L, et al. Structure evolution, dielectric, and conductivity behavior of (K0.5Na0.5)NbO3-Bi(Zn2/3Nb1/3)O3 ceramics. J Adv Ceram 2021;10(4):809-19.

[285]

Shen Z-Y, Li J-F, Wang K, Xu S, Jiang W, Deng Q. Electrical and mechanical properties of fine-grained Li/Ta-modified (Na,K)NbO3-based piezoceramics prepared by spark plasma sintering. J Am Ceram Soc 2010;93(5):1378-83.

[286]

Cen Z, Bian S, Xu Z, Wang K, Guo L, Li L, et al. Simultaneously improving piezoelectric properties and temperature stability of Na0.5K0.5NbO3 (KNN)-based ceramics sintered in reducing atmosphere. J Adv Ceram 2021;10:820-31.

[287]

Wang K, Li J-F, Na K. NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. J Adv Ceram 2012;1:24-37.

[288]

Shen Z-Y, Xu Y, Li J-F. Enhancement of Qm in CuO-doped compositionally optimized Li/Ta-modified (Na,K)NbO3 lead-free piezoceramics. Ceram Int 2012;38(1):S331-4.

[289]

Shen Z-Y, Li J-F, Chen R, Zhou Q, Kirk Shung K. Microscale 1-3-type (Na,K)NbO3-based Pb-free piezocomposites for high-frequency ultrasonic transducer applications. J Am Ceram Soc 2011;94(5):1346-9.

[290]

Wang X, Huan Y, Zhao P, Liu X, Wei T, Zhang Q, et al. Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: paving the way for ultrahigh energy storage capacitors. J Materiomics 2021;7(4):780-9.

[291]

Swain S, Kumar P, Agrawal DK. Dielectric and ferroelectric study of KNN modified NBT ceramics synthesized by microwave processing technique. Ceram Int 2013;39(3):3205-10.

[292]

Gao F, Dong X, Mao C, Cao F, Wang G. c/a Ratio-dependent energy-storage density in (0.9-x)Bi0.5Na0.5TiO3-xBaTiO3-0.1K0.5Na0.5NbO3 ceramics. J Am Ceram Soc 2011;94(12):4162-4.

[293]

Chandrasekhar M, Kumar P. Synthesis and characterizations of SrTiO3 modified BNT-KNN ceramics for energy storage applications. J Electroceram 2017;38(1):111-8.

[294]

Yadav AK, Yoo IR, Choi SH, Park JY, Song HC, Cho KH. Enhanced energy storage properties and excellent fatigue resistance of Pb-free Bi0.47Na0.376K0.094Ba0.06Nb0.024Ti0.97-x(Ta0.24Sn0.7)xO3 relaxor ceramics. J Alloys Compd 2022;923:166324.

[295]

Lv J, Song S, Jiao Y, Yang Z, Zhang Y, Fan Y, et al. Enhancing the dielectric and energy storage properties of lead-free Na0.5Bi0.5TiO3-BaTiO3 ceramics by adding K0.5Na0.5NbO3 ferroelectric. Ceram Int 2022;48(1):22-31.

[296]

Pan Z, Hu D, Zhang Y, Liu J, Shen B, Zhai J. Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem C 2019;7(14):4072-8.

[297]

Zhang S. High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides. Microstructures 2023;3:2023003.

[298]

Shi J, Zhao Y, Dong R, Tian W, Liu X. Polarization enhancement in Fe doped BNT-based relaxors using Bi compensation. J Alloys Compd 2021;889:161720.

[299]

Yang H, Cai Z, Zhu C, Feng P, Wang X. Ultrahigh energy storage performance in BNT-based ferroelectric ceramics with simultaneously enhanced polarization and breakdown strength. ACS Sustainable Chem Eng 2022;10(28):9176-83.

[300]

Malik RA, Hussain A, Maqbool A, Zaman Arif, Ahn CW, Rahman JU, et al. Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc 2015;98(12):38428.

[301]

Ge R-F, Zhao Z-H, Duan S-F, Kang X-Y, Lv Y-K, Yin D-S, et al. Large electro-strain response of La3+ and Nb5+ co-doped ternary 0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3 lead-free piezoelectric ceramics. J Alloys Compd 2017;724:1000-6.

[302]

Yang F, Pan Z, Ling Z, Hu D, Ding J, Li P, et al. Realizing high comprehensive energy storage performances of BNT-based ceramics for application in pulse power capacitors. J Eur Ceram Soc 2021;41(4):2548-58.

[303]

Shi J, Zhao Y, He J, Li T, Zhu F, Tian W, et al. Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS Appl Energy Mater 2022;5(3):3436-46.

[304]

Yin J, Lv X, Wu J. Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics. Ceram Int 2017;43(16):13541-6.

[305]

Yao Y, Li Y, Sun N, Du J, Li X, Zhang L, et al. Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.1NaNbO3 ceramics. Ceram Int 2018;44(6):5961-6.

[306]

Tao C-W, Geng X-Y, Zhang J, Wang R-X, Gu Z-B, Zhang S-T. Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3:ZnO relaxor ferroelectric composites with high breakdown electric field and large energy storage properties. J Eur Ceram Soc 2018;38(15):4946-52.

[307]

Patel S, Chauhan A, Vaish R, Thomas P. Enhanced energy storage performance of glass added 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ferroelectric ceramics. J Asian Ceram Soc 2015;3(4):383-9.

[308]

Chandrasekhar M, Sonia Kumar P. Synthesis and characterizations of NaNbO3 modified BNT-BT-BKT ceramics for energy storage applications. Physica B 2016;497:59-66.

[309]

Shi W, Yang Y, Zhang L, Jin R, Hu Q, Alikin DO, et al. Enhanced energy storage performance of eco-friendly BNT-based relaxor ferroelectric ceramics via polarization mismatch-reestablishment and viscous polymer process. Ceram Int 2022;48(5):6512-9.

[310]

Ren P, Liu Z, Liu H, Sun S, Wan Y, Long C, et al. Large electrostrain and structural evolution in (1-x)[0.94Bi0.5Na0.5TiO3-0.06BaTiO3]-xAgNbO3 ceramics. J Eur Ceram Soc 2019;39(4):994-1001.

[311]

Ren P, He J, Wang X, Wan Y, Yan F, Zhao G. High-temperature dielectrics based on (1-x)[0.94Bi0.5Na0.5TiO3-0.06BaTiO3-0.03AgNbO3]-xK0.5Na0.5NbO3. J Mater Sci Mater Electron 2018;9(19):17016-21.

[312]

Luo C, Wei Y, Feng Q, Wang M, Luo N, Yuan C, et al. Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application. Chem Eng J 2022;429:132165.

[313]

Shi P, Hong Z, Zhu X, Liu Q, Yang B, Li T, et al. Enhancement of energy storage properties of Bi0.5Na0.5TiO3-based relaxor ferroelectric under moderate electric field. Appl Phys Lett 2022;120(13):132903.

[314]

Zhang L, Zhang A, Hou H, Miao Z, Liu J, Wang X, et al. Stronger B-site ionic disorder boosting enhanced dielectric energy-storage performance in BNT-based relaxor ferroelectric ceramics. Ceram Int 2022;49(5):7905-12.

[315]

Dong X, Li X, Chen X, Tan Z, Wu J, Zhu J, et al. 1-x)[0.90NN-0.10Bi(Mg2/3Nb1/3)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 ceramics with core-shell structures: a pathway for simultaneously achieving high polarization and breakdown strength. Nano Energy 2022;101:107577.

[316]

Zhang L, Jing R, Huang Y, Hu Q, Alikin DO, Shur VY, et al. Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering. J Materiomics 2022;8(3):527-36.

[317]

Thawong P, Kornphom C, Chootin S, Bongkarn T. Phase evolution and electrical properties of a new system of (1-x)[BNT-BKT-KNN]-xBCTZ lead-free piezoelectric ceramics synthesized by the solid-state combustion technique. Phase Transitions 2016;89(3):232-41.

[318]

Yang H, Yan F, Lin Y, Wang T, Wang F. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Sci Rep 2017;7(1):1-12.

[319]

Tong S. Size and temperature effects on dielectric breakdown of ferroelectric films. J Adv Ceram 2021;10(1):181-6.

[320]

Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 1998;61(9):1267.

[321]

Trolier-McKinstry S, Zhang S, Bell AJ, Tan X. High-performance piezoelectric crystals, ceramics, and films. Annu Rev Mater Res 2018;48:191-217.

[322]

Zhou S, Lin D, Su Y, Zhang L, Liu W. Enhanced dielectric, ferroelectric, and optical properties in rare earth elements doped PMN-PT thin films. J Adv Ceram 2021;10(1):98-107.

[323]

Liu W, Wang H. Flexible oxide epitaxial thin films for wearable electronics: fabrication, physical properties, and applications. J Materiomics 2020;6(2):385-96.

[324]

Yang B, Zhang Y, Pan H, Zhang Y, Pan H, Si W, et al. High-entropy enhanced capacitive energy storage. Nat Mater 2022;21(9):1074-80.

[325]

Chiu F-C. A review on conduction mechanisms in dielectric films. Adv Mater Sci Eng 2014:578168.

[326]

Gao W, Zhu Y, Wang Y, Yuan G, Liu JM. A review of flexible perovskite oxide ferroelectric films and their application. J Materiomics 2020;6(1):1-16.

[327]

Co ND, Cuong LV, Tu BD, Thang PD, Dein LX, Hung VN, et al. Effect of crystallization temperature on energy-storage density and efficiency of lead-free Bi0.5(Na0.8K0.2)0.5TiO3 thin films prepared by sol-gel method. J Sci: Adv Mater Dev 2019;4(3):370-5.

[328]

Sakamoto W, Makino N, Lee BY, Iijim T, Moriya M, Yogo T. Influence of volatile element composition and Mn doping on the electrical properties of lead-free piezoelectric (Bi0.5Na0.5)TiO3 thin films. Sensor Actuator Phys 2013;200:60-7.

[329]

Yang C, Qian J, Han Y, Sun X, Sun Z, Chen L. Ni doping to enhance ferroelectric, energy-storage and dielectric properties of lead-free NBT ceramic thin film with low leakage current. Ceram Int 2018;44(6):7245-50.

[330]

Yang C, Yao Q, Qian J, Han Y, Chen J. Growth, microstructure, energy-storage and dielectric performances of chemical-solution NBT-based thin films: effect of sodium nonstoichimometry. Ceram Int 2018;44(8):9152-8.

[331]

Zhang J, Song J, Li X, Dong G, Zhao L. Enhanced energy storage performance in 0.9NBT-0.1BFO thin film. Mater Lett 2020;276:128266.

[332]

Yue W, Jia T, Chen Y, Dai W, Yu L, Cai Y, et al. Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 lead-free thin films for energy storage applications through nanodomain design. Crystals 2022;12(11):1524.

[333]

Zhang Y, Li W, Qiao Y, Zhao Y, Wang Z, Yang Yu, et al. 0.6ST-0.4NBT thin film with low level Mn doping as a lead-free ferroelectric capacitor with high energy storage performance. Appl Phys Lett 2018;112(9):093902.

[334]

Xie Y, Hao H, Huang Z, Zhang S, Cao M, Yao Z, et al. Large energy-storage density with good dielectric property in bismuth sodium titanate-based thin films. J Alloys Compd 2021;884:161031.

[335]

Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, et al. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv Electron Mater 2015;1(5):1500052.

[336]

Wu Y, Hu Y, Wang X, Zhong C, Li L. Temperature and frequency-dependent dielectric response and energy-storage performance in high (100)-oriented Sc doped (Na0.85K0.15)0.5Bi0.5TiO3 films. RSC Adv 2017;7(81):51485-94.

[337]

Chen P, Wu S, Li P, Zhai J, Shen B. High recoverable energy storage density in (1-x)Bi0.5(Na0.8K0.2)0.5TiO3-xSrZrO3 thin films prepared by a sol-gel method. J Eur Ceram Soc 2018;38(14):4640-5.

[338]

Xie Y, Hao H, Xie J, He Z, Zhang S, Li Z, et al. The energy-storage performance and dielectric properties of (0.94-x)BNT-0.06BT-xST thin films prepared by sol-gel method. J Alloys Compd 2020;860:158164.

[339]

Yao Y, Li Y, Sun N, Du J, Li X, Zhang L, et al. High energy-storage performance of BNT-BT-NN ferroelectric thin films prepared by RF magnetron sputtering. J Alloys Compd 2018;750:228-34.

[340]

Tang Z, Ge J, Ni H, Lu B, Tang XG, Lu SG, et al. High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3-BaTiO3 thin film capacitor with good temperature stability. J Alloys Compd 2018;757:169-76.

[341]

Yang C, Han Y, Feng C, Lin X, Huang S, Cheng X, et al. Toward multifunctional electronics: flexible NBT-based film with a large electrocaloric effect and high energy storage property. ACS Appl Mater Interfaces 2020;12(5):6082-9.

[342]

Wu S, Chen P, Zhai J, Shen B, Li P, Li F. Enhanced piezoelectricity and energy storage performances of Fe-doped BNT-BKT-ST thin films. Ceram Int 2018;44(17):21289-94.

[343]

Li P, Li W, Liu S, Zhang Y, Zhai J, Chen H. Reduced leakage current, enhanced ferroelectric and dielectric properties of (La, Fe)-co-doped Bi0.5Na0.5TiO3-based thin films. Ceram Int 2015;41:S344-8.

[344]

Chen P, Wu S, Li P, Zhai J, Shen B. Great enhancement of energy storage density and power density in BNBT/xBFO multilayer thin film hetero-structures. Inorg Chem Front 2018;5(9):2300-5.

[345]

Sun N, Du J, Zhao Y, Lu C, Han P, Li Y, et al. Flexible multilayer lead-free film capacitor with high energy storage performances via heterostructure engineering. J Materiomics 2022;8(4):772-80.

[346]

Qian J, Han Y, Yang C, Lv P, Zhang X, Feng C, et al. Energy storage performance of flexible NKBT/NKBT-ST multilayer film capacitor by interface engineering. Nano Energy 2020;74:104862.

[347]

Wang J, Sun N, Li Y, Zhang Q, Hao X, Chou X. Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram Int 2017;43(10):7804-9.

[348]

Wang J, Li Y, Sun N, Zhang Q, Zhang L, Hao X, et al. Effects of Fe3+ doping on electrical properties and energy-storage performances of the (Na0.85K0.15)0.5Bi0.5TiO3 thick films prepared by sol-gel method. J Alloys Compd 2017;727:596-602.

[349]

Zhang L, Hao X, Zhang L, Yang J, An S. Microstructure and energy-storage performance of BaO-B2O3-SiO2 glass added (Na0.5Bi0.5)TiO3 thick films. J Mater Sci Mater Electron 2013;24(10):3830-5.

[350]

Zhang L, Hao X, Zhang L. Enhanced energy-storage performances of Bi2O3-Li2O added (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 thick films. Ceram Int 2014;40(6):8847-51.

[351]

Zhang L, Hao X. Dielectric properties and energy-storage performances of (1-x)(Na0.5Bi0.5)TiO3-xSrTiO3 thick films prepared by screen printing technique. J Alloys Compd 2014;586:674-8.

[352]

Xu Z, Hao X, An S. Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3-SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J Alloys Compd 2015;639:387-92.

[353]

Kim MK, Ji SY, Lim JH, Kim SW, Jeong DY. Energy storage performance and thermal stability of BNT-SBT with artificially modulated nano-grains via aerosol deposition method. J Asian Ceram Soc 2022;10(1):196-202.

[354]

Feng M, Feng Y, Zhang T, Li J, Chen Q, Chi Q, et al. Recent advances in multilayer-structure dielectrics for energy storage application. Adv Sci 2021;8(23):2102221.

[355]

Zhao P, Cai Z, Wu L, Zhu C, Li L. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J Adv Ceram 2021;10(6):1153-93.

[356]

Zhao P, Cai Z, Chen L, Wu L, Huan Y, Guo L, et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy Environ Sci 2020;13(12):4882-90.

[357]

Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 2003;42(1R):1.

[358]

Cai Z, Wang H, Zhao P, Chen L, Zhu C, Hui K, et al. Significantly enhanced dielectric breakdown strength and energy density of multilayer ceramic capacitors with high efficiency by electrodes structure design. Appl Phys Lett 2019;115(2):023901.

[359]

Covaci C, Gontean A. “Singing” multilayer ceramic capacitors and mitigation methods–a review. Sensors 2022;22(10):3869.

[360]

Fan P, Liu K, Ma W, Tan H, Zhang Q, Zhang L, et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J Materiomics 2021;7(3):508-44.

[361]

Hong K, Lee TH, Suh JM, Suh JM, Yoon S-H, Jang HW. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J Mater Chem C 2019;7(32):9782-802.

[362]

Zhao H, Ren P, Hua Q, Liu L, Wang X, Wan Y, et al. Temperature stable (1-x)(0.9Na0.5Bi0.5TiO3-0.1BiAlO3)-xNaTaO3 ceramics and capacitors with ultra-wide operational range. J Alloys Compd 2021;886:161315.

[363]

Tong XY, Du ZZ, Yang YT, Chen SH, Song MW, Zhou JJ, et al. Effect of stress on the phase transition and optimizing electric-induced strain behavior of Bi0.5Na0.5TiO3-SrTiO3 lead-free co-fired multilayer piezoactuators. J Eur Ceram Soc 2022;42(5):2157-69.

[364]

Tong X-Y, Yang Y-T, Du Z-Z, Song M-W, Zhou J-J, Liu H, et al. Electromechanical properties and cycling stability of low-temperature co-fired BNT-ST multilayer piezoactuators. J Mater Sci Mater Electron 2022;33(27):21482-96.

[365]

Yan F, Ge G, Qian J, Lin J, Chen C, Liu Z, et al. Gradient-structured ceramics with high energy storage performance and excellent stability. Small 2022;19(6):2206125.

[366]

Yan F, Bai H, Ge G, Lin J, Zhu K, Li G, et al. Boosting energy storage performance of lead-free ceramics via layered structure optimization strategy. Small 2022;18(34):2202575.

[367]

Li J, Shen Z, Chen X, Yang S, Zhou W, Wang M, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020;19(9):999-1005.

[368]

Sun Y, Liu H, Hao H, Zhang L, Zhang S. The role of Co in the BaTiO3-Na0.5Bi0.5TiO3 based X9R ceramics. Ceram Int 2015;41(1):931-9.

[369]

Yan F, Yang H, Ying L, Wang T. Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J Mater Chem C 2018;6(29):7905-12.

[370]

Zhao P, Chen L, Li L, Wang X. Ultrahigh energy density with excellent thermal stability in lead-free multilayer ceramic capacitors via composite strategy design. J Mater Chem 2021;9(46):25914-21.

[371]

Sun Y, Liu H, Hao H, Song Z, Zhang S. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J Am Ceram Soc 2015;98(5):1574-9.

[372]

Zhu L-F, Yan Y, Leng H, Li X, Cheng L-Q, Priya S. Energy-storage performance of NaNbO3 based multilayered capacitors. J Mater Chem C 2021;9(25):7950-7.

[373]

Groh C, Kobayashi K, Shimizu H, Doshida Y, Mizuno Y, Patterson EA, et al. High-temperature multilayer ceramic capacitors based on 100-x(94Bi1/2Na1/2TiO3-6BaTiO3)-xK0.5Na0.5NbO3. J Am Ceram Soc 2016;99(6):2040-6.

[374]

Jia W, Hou Y, Zheng M, Xu Y, Yu X, Zhu M, et al. Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J Am Ceram Soc 2018;101(8):3468-79.

[375]

Li M, Fan P, Ma W, Liu K, Zang J, Samart C, et al. Constructing layered structures to enhance the breakdown strength and energy density of Na0.5Bi0.5TiO3-based lead-free dielectric ceramics. J Mater Chem C 2019;7(48):15292-300.

Journal of Materiomics
Pages 86-123
Cite this article:
Zhu W, Shen Z-Y, Deng W, et al. A review: (Bi,Na)TiO3 (BNT)-based energy storage ceramics. Journal of Materiomics, 2024, 10(1): 86-123. https://doi.org/10.1016/j.jmat.2023.05.002

171

Views

28

Crossref

28

Web of Science

30

Scopus

Altmetrics

Received: 16 March 2023
Revised: 25 April 2023
Accepted: 04 May 2023
Published: 24 May 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return