AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Inhibiting oxygen vacancies and twisting NbO6 octahedron in erbium modified KNN-based multifunctional ceramics

Lulu GaoaZhiyong Liua,( )Pengrong RenbRenhong LiangcTing LicKun GuoaBing XieaJinshan LuaPu MaoaJun TiandLonglong Shuc,( )
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

It is a challenge to obtain highly tunable multifunctional performances in one ferroelectric system by a simple approach to meet the miniaturization, integration, and functionalization requirements of advanced electronic components. Herein, rare earth erbium (Er) modulated 0.9K0.5Na0.5NbO3-0.1Sr(1-x)ErxTi(1-x/4)O3, (0.9KNN-0.1ST: xEr) transparent-photoluminescent-ferroelectric energy storage multifunctional ceramics are prepared to solve this problem. The effect of lattice distortion and oxygen vacancies by Er doping on the optical and electrical properties is systematically investigated. The Er3+ ions can introduce a large distortion of the NbO6 octahedron by replacing the A-site in KNN-based ceramics. Thanks to the higher c/a ratio and lower oxygen vacancy content are simultaneously obtained in 0.9KNN-0.1ST: 0.1Er ceramics. The effective energy storage density (Wrec) of 0.86 J/cm3, excellent near-infrared transmittance of 51.7% (1100 nm) and strong green upconversion photoluminescence are achieved in this multifunctional ceramic. This study provides a solid basis for rare earth ions doped ferroelectric ceramics with tunable multifunctional properties and has significant potential for applications in optoelectronic devices.

References

[1]

Shen B, Li Y, Hao X. Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration over a broad temperature range based on PLZT 9/65/35 thick films. ACS Appl Mater Interfaces 2019;11(37):34117-27.

[2]

Gao S, Li P, Qu J, Sun M, Hao J, Fu P, et al. Temperature-insensitive KNN-based ceramics by elevating O-T phase transition temperature and crystal texture. J. Materiomics 2023;9(2):261-8.

[3]

Cheng X, Liu Z, Jing Q, Mao P, Guo K, Lu J, et al. Porous (K0.5Na0.5)0.94Li0.06NbO3-polydimethylsiloxane piezoelectric composites harvesting mechanical energy for efficient decomposition of dye wastewater. J Colloid Interface Sci 2023;629:11-21.

[4]

Shu L, Ke S, Fei L, Huang W, Wang Z, Gong J, et al. Photoflexoelectric effect in halide perovskites. Nat Mater 2020;19(6):605-9.

[5]

Song R, Zhao Y, Li W, Yu Y, Sheng J, Li Z, et al. High temperature stability and mechanical quality factor of donor-acceptor co-doped BaTiO3 piezoelectrics. Acta Mater 2019;181:200-6.

[6]

Shu L, Wang Z, Liang R, Zhang Z, Shu S, Tang C, et al. Intrinsic flexoelectricity of van der Waals epitaxial thin films. Phys Rev B 2022;106(2):024108.

[7]

Varshney D, Sharma P, Satapathy S, Gupta P. Structural, magnetic and dielectric properties of Pr-modified BiFeO3 multiferroic. J Alloys Compd 2014;584:232-9.

[8]

Zhang J, Tang M, Wang X, Li Y, Yao X. Elastico-mechanoluminescence properties of Pr3+-doped BaTiO3–CaTiO3 diphase ceramics with water resistance behavior. Ceram Int 2012;38:S581-4.

[9]

Ji W, He X, Cheng W, Qiu P, Zeng X, Xia B, et al. Effect of La content on dielectric, ferroelectric and electro-optic properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 transparent ceramics. Ceram Int 2015;41(2):1950-6.

[10]

Liu X, Tan P, Ma X, Wang D, Jin X, Liu Y, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches. Science 2022;376(6591):371-7.

[11]

Zhou Y, Wang P, Lin J, Lu Q, Wu X, Gao M, et al. High-contrast photochromic Eu-doped K0.5Na0.5NbO3 ceramics with prominent pellucidity. Dalton Trans 2021;50(14):4914-22.

[12]

Sun H, Chan Y, Kwok K. Electric field-responsive photoluminescence color switching and reversible properties via Tb/Eu co-doped ergodic relaxor ferroelectrics. Phys Chem Chem Phys 2019;21(14):7567-75.

[13]

Ai J, Chen X, Luo L, Zheng R, Yu L. Novel transparent Eu and Hf co-doped AgNbO3 antiferroelectric ceramic with high-quality energy-storage performance. Ceram Int 2022;48(16):23630-7.

[14]

Wang F, Li X, Xu Q, Chen H, Xi J, Zhang F, et al. Simultaneous enhancement of electrical and mechanical properties in CaBi2Nb2O9-based ceramics. J Eur Ceram Soc 2022;42(10):4196-211.

[15]

Zhou Y, Xiong R, Wang P, Wu X, Sa B, Lin C, et al. Strain and illumination triggered regulations of up-conversion luminescence in Er-doped Bi0.5Na0.5TiO3BaTiO3/Mica flexible multifunctional thin films. J. Materiomics 2022;8(3):586-95.

[16]

Lin Y, Wang R, Qu J, Gao S, Zhang Y, Yan J, et al. Enhanced piezoelectric properties and temperature stability in KNN-based textured ceramics. J Adv Dielectr 2022;12(5):2244006.

[17]

Liu H, Wang J, Wang H, Xu J, Zhou C, Qiu W. Er3+ and Sr(Bi0.5Nb0.5)O3-modified (K0.5Na0.5)NbO3: a new transparent fluorescent ferroelectric ceramic with high light transmittance and good luminescence performance. Ceram Int 2022;48(3):4230-7.

[18]

Lin J, Lu Q, Wu X, Sun H, Lin C, Lin T, et al. In situ boost and reversible modulation of dual-mode photoluminescence under an electric field in a tape-casting-based Er-doped K0.5Na0.5NbO3 laminar ceramic. J Mater Chem C 2019;7(26):7885-92.

[19]

Lv X, Wu J, Zhu J, Xiao D, Zhang X. Temperature stability and electrical properties in La-doped KNN -based ceramics. J Am Ceram Soc 2018;101(9):4084-94.

[20]

Lin J, Xu J, Liu C, Lin Y, Wu X, Lin C, et al. Effects of compositional changes on up-conversion photoluminescence and electrical properties of lead-free Er-doped K0.5Na0.5NbO3-SrTiO3 transparent ceramics. J Alloys Compd 2019;784:60-7.

[21]

Sun Y, Wang H, Zhou C, Yang L, Xu J. Enhancement of the up-conversion luminescence performance of Ho3+-doped 0.825K0.5Na0.5NbO3-0.175Sr(Yb0.5Nb0.5)O3 transparent ceramics by polarization. Bull Mater Sci 2021;44(2):139.

[22]

Zhang Y, Liu J, Sun H, Peng D, Li R, Bulin C, et al. Reversible luminescence modulation of Ho-doped K0.5Na0.5NbO3 piezoelectrics with high luminescence contrast. J Am Ceram Soc 2018;101(6):2305-12.

[23]

Yang Z, Du J, Martin L, Poelman D. Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics. J Eur Ceram Soc 2021;41(3):1925-33.

[24]

Li X, Guan L, Li Y, Sun H, Zhang Q, Hao X. Optical control of Er3+-doped M0.5Bi2.5Nb2O9 (M = Li, Na, K) materials for thermal stability and temperature sensing using photochromic reactions. J Mater Chem C 2020;8(44):15685-96.

[25]

Li F, Kwok K. Fabrication of transparent electro-optic (K0.5Na0.5)1-xLixNb1-xBixO3 lead-free ceramics. J Eur Ceram Soc 2013;33(1):123-30.

[26]

Sun H, Lv Y, Zhu Y, Lin J, Wu X, Zhang Q, et al. Photochromism-induced light scattering and photoswithing in Er doped (K,Na)NbO3 transparent ceramics. J Am Ceram Soc 2019;102(11):6732-40.

[27]

Wu X, Lin J, Xu Z, Zhao C, Lin C, Wang H, et al. Defect management and multi-mode optoelectronic manipulations via photo-thermochromism in smart windows. Laser Photon Rev 2021;15(10):2100211.

[28]

Sun H, Zhang Y, Liu J, Peng D, Zhang Q, Hao X. Reversible upconversion switching for Ho/Yb codoped (K,Na)NbO3 ceramics with excellent luminescence readout capability. J Am Ceram Soc 2018;101(12):5659-74.

[29]

Xue S, Deng H, Xie Q, Hu Y, Yan J, Zhao X, et al. Giant tunability of upconversion photoluminescence in Er3+-doped (K, Na)NbO3 single crystals. Nanoscale 2019;11(36):16928-34.

[30]

Wu X, Lau C, Kwok K. Effect of phase transition on photoluminescence of Er-doped KNN ceramics. J Lumin 2014;155:343-50.

[31]

Sun H, Zhang Q, Wang X, Gu M. Green and red upconversion luminescence of Er3+-doped K0.5Na0.5NbO3 ceramics. Ceram Int 2014;40(2):2581-4.

[32]

Jia P, Zheng Z, Li Y, Li Z, Liu T, Wang Y. The achieving enhanced piezoelectric performance of KNN-based ceramics: decisive role of multi-phase coexistence induced by lattice distortion. J Alloys Compd 2023;930:167416.

[33]

Huan Y, Wei T, Wang Z, Lei C, Chen F, Wang X. Polarization switching and rotation in KNN-based lead-free piezoelectric ceramics near the polymorphic phase boundary. J Eur Ceram Soc 2019;39(4):1002-10.

[34]

Yan T, Chen K, Li C, Liu M, Wang J, Fang L, et al. Structure evolution, dielectric, and conductivity behavior of (K0.5Na0.5)NbO3-Bi(Zn2/3Nb1/3)O3 ceramics. J Adv Ceram 2021;10(4):809-19.

[35]

Lv X, Wu J, Zhu J, Xiao D, Zhang X. A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction. J Eur Ceram Soc 2018;38(1):85-94.

[36]

Lin J, Cao Y, Zhu K, Yan F, Shi C, Bai H, et al. Ultrahigh energy harvesting properties in temperature-insensitive eco-friendly high-performance KNN-based textured ceramics. J Mater Chem 2022;10(14):7978-88.

[37]

Chen L, Deng S, Liu H, Wu J, Qi H, Chen J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat Commun 2022;13(1):3089.

[38]

Lin J, Ge G, Zhu K, Bai H, Sa B, Yan F, et al. Simultaneously achieving high performance of energy storage and transparency via A-site non-stoichiometric defect engineering in KNN-based ceramics. Chem Eng J 2022;444:136538.

[39]

Xing J, Huang Y, Wu B, Liu H, Tan Z, Chen Q, et al. Energy storage behavior in ErBiO3-doped (K, Na)NbO3 lead-free piezoelectric ceramics. ACS Appl Electron Mater 2020;2(11):3717-27.

[40]

Zhang J, Qin Y, Gao Y, Yao W, Zhao M, Damjanovic D. Improvement of physical properties for KNN-based ceramics by modified two-step sintering. J Am Ceram Soc 2014;97(3):759-64.

[41]

Lin C, Wang H, Wang P, Wu X, Lin T, Sa B, et al. Smart white lighting and multi-mode optical modulations via photochromism in Dy-doped KNN-based transparent ceramics. J Am Ceram Soc 2020;104(2):903-16.

[42]

Zhao X, Chao X, Wu D, Liang P, Yang Z. Evaluation of birefringence contribution to transparency in (1-x)KNN-xSr(Al0.5Ta0.5)O3 ceramics: a phase structure tailoring. J Alloys Compd 2019;798:669-77.

[43]

Zhao X, Fang Q, Xia C, Xie Y, Wu D, Chao X, et al. Evaluation of pore scattering in transparent ceramics: a simplified model for nanometric spherical pores. J Am Ceram Soc 2022;106(1):527-37.

[44]

Penilla E, Hardin C, Kodera Y, Basun S, Evans D, Garay J. The role of scattering and absorption on the optical properties of birefringent polycrystalline ceramics: modeling and experiments on ruby (Cr:Al2O3). J Appl Phys 2016;119(2):023106.

[45]

Zhang M, Yang H, Li D, Lin Y. Excellent energy density and power density achieved in K0.5Na0.5NbO3-based ceramics with high optical transparency. J Alloys Compd 2020;829:154565.

[46]

Li C, Huan Y, Wang X, Wang X, Wang T, Wei T. Amelioration on energy storage performance of KNN-based transparent ceramics by optimizing the polarization and breakdown strength. J Am Ceram Soc 2022;105(10):6158-67.

[47]

Liu Z, Fan H, Zhao Y, Dong G, Jo W. Optical and tunable dielectric properties of K0.5Na0.5NbO3-SrTiO3 ceramics. J Am Ceram Soc 2016;99(1):146-51.

[48]

Hou L, Li C, Wang X, Wang X, Wang T, Huan Y. Superior energy storage efficiency through tailoring relaxor behavior and band energy gap in KNN-based ferroelectric ceramic capacitors. J Adv Dielectr 2022;13(1):2242001.

[49]

Huan Y, Wang X, Yang W, Hou L, Zheng M, Wei T, et al. Optimizing energy harvesting performance by tailoring ferroelectric/relaxor behavior in KNN-based piezoceramics. J Adv Ceram 2022;11(6):935-44.

[50]

Ren X, Jin L, Peng Z, Chen B, Qiao X, Wu D, et al. Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem Eng J 2020;390:124566.

[51]

Wang L, Liu H, Yu C, Liu K, Wang H, Xu J, et al. High-transmittance (K0.5Na0.5)NbO3 ferroelectric ceramics modified by Sr(Bi0.5Ta0.5)O3. J Electron Mater 2022;52(2):1050-6.

[52]

Yuan Q, Li G, Yao F, Cheng S, Wang Y, Ma R, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.

[53]

Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365(6453):578-82.

[54]

Saha D, Sen A. Low-frequency dispersion extended to higher frequencies: a new look at relaxor behaviour. Phil Mag Lett 1995;71(6):367-76.

[55]

Jing Q, Liu Z, Cheng X, Li C, Ren P, Guo K, et al. Boosting piezo-photocatalytic activity of BiVO4/BiFeO3 heterojunctions through built-in polarization field tailoring carrier transfer performances. Chem Eng J 2023;464:142617.

[56]

Li M, Tang X, Zeng S, Jiang Y, Liu Q, Zhang T, et al. Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of Bi(Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics. J. Materiomics 2018;4(3):194-201.

[57]

Long C, Fan H, Ren W, Zhao J. Double polarization hysteresis and dramatic influence of small compositional variations on the electrical properties in Bi4Ti3O12 ceramics. J Eur Ceram Soc 2019;39(14):4103-12.

[58]

Guo B, Yan Y, Tang M, Wang Z, Li Y, Zhang L, et al. Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process. Chem Eng J 2021;420:130475.

[59]

Li M, Sinclair D. The extrinsic origins of high permittivity and its temperature and frequency dependence in Y0.5Ca0.5MnO3 and La1.5Sr0.5NiO4 ceramics. J Appl Phys 2012;111(5):054106.

[60]

Liu Z, Lu J, Mao Y, Ren P, Fan H. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J Eur Ceram Soc 2018;38(15):4939-45.

[61]

Su Q, Ma Z, Zhu J, Sun N, Zhao Y, Lu C, et al. Excellent energy-storage performance in BNT-SST-LMN lead-free relaxor ferroelectric ceramics with high electrical homogeneity. ACS Appl Energy Mater 2022;5(12):15247-56.

Journal of Materiomics
Pages 179-189
Cite this article:
Gao L, Liu Z, Ren P, et al. Inhibiting oxygen vacancies and twisting NbO6 octahedron in erbium modified KNN-based multifunctional ceramics. Journal of Materiomics, 2024, 10(1): 179-189. https://doi.org/10.1016/j.jmat.2023.05.007

137

Views

6

Crossref

6

Web of Science

6

Scopus

Altmetrics

Received: 20 March 2023
Revised: 07 May 2023
Accepted: 08 May 2023
Published: 17 June 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return