AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Defect engineering in N-doped OMC for lightweight and high-efficiency electromagnetic wave absorption

Panpan Zhoua,bJing Zhangb,c,dZhi SongbYawei KuangaYushen Liua,( )Lixi Wangb,( )Qitu Zhangb,( )
School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, China
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
China Geological Survey, Nanjing Center, Nanjing, 210016, China
Supervision and Testing Center of East China, Mineral Resources of the Ministry of Land and Resources, Nanjing, 210016, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Developing low density and efficient dielectric loss materials has become a research hotspot, which can greatly meet the demands of modern radars and settle the problem of electromagnetic wave pollution. Herein, a series of N-doped ordered mesoporous carbon (OMC) materials with different nitrogen content were prepared via a modified self-assembly method and defect engineering in subsequent calcination treatment. It was discovered that the content and type of nitrogen doping can be effectively modulated by the amount of precursor dicyandiamide, resulting in the changes in porous structure, carbon defects, electromagnetic properties, microwave absorption (MA) performance and radar cross section (RCS) reduction values. Remarkably, as-fabricated OMC/N2.5 displays ideal MA performance, whose minimum reflection loss (RL(min)) value reaches −35.3 dB at 7.76 GHz (3.0 mm) and its effective absorption bandwidth reaches 3.52 GHz (10.64–14.16 GHz, 2.0 mm). Furthermore, the optimal RCS reduction values can be obtained as 12.01 dB·m2 when the detection theta is 30°, which validly reduces the chances of being detected by radar. Thus, this work opens up a novel way for the development of lightweight and high-efficiency MA materials.

References

[1]

Liu P, Gao S, Zhang G, Huang Y, You W, Che R. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv Funct Mater 2021;31:2102812. https://doi.org/10.1002/adfm.202102812.

[2]

Song Q, Ye F, Yin X, Li W, Li H, Liu Y, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv Mater 2017;29:1701583. https://doi.org/10.1002/adma.201701583.

[3]

Wu Y, Zhao Y, Zhou M, Tan S, Peymanfar R, Aslibeiki B, et al. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett 2022;14:171. https://doi.org/10.1007/s40820-022-00906-5.

[4]

Tian H, Qiao J, Yang Y, Xu D, Meng X, Liu W, et al. ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption. Chem Eng J 2022;450:138011. https://doi.org/10.1016/j.cej.2022.138011.

[5]

Li S, Tang X, Zhao X, Lu S, Luo J, Chai Z, et al. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J Mater Sci Technol 2023;133:238-48. https://doi.org/10.1016/j.jmst.2022.06.018.

[6]

Xie A, Wang J, Zhang C, Cheng S. Single crystal to polycrystal: enhanced dielectric loss and electromagnetic wave absorption of MoO2 ceramic at Gigahertz. Ceram Int 2022;48:29715-21. https://doi.org/10.1016/j.ceramint.2022.06.229.

[7]

Shu R, Yang X, Zhao Z. Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 2023;210:118047. https://doi.org/10.1016/j.carbon.2023.118047.

[8]

Ma W, He P, Wang T, Xu J, Liu X, Zhuang Q, et al. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem Eng J 2021;420:129875. https://doi.org/10.1016/j.cej.2021.129875.

[9]

Li X, Wen C, Yang L, Zhang R, Li X, Li Y, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 2021;175:509-18. https://doi.org/10.1016/j.carbon.2020.11.089.

[10]

Xie A, Lin X, Zhang C, Cheng S, Dong W, Wu F. Oxygen vacancy mediated polymerization of pyrrole on MoO3 to construct dielectric nanocomposites for electromagnetic waves absorption application. J Alloys Compd 2023;938:168523. https://doi.org/10.1016/j.jallcom.2022.168523.

[11]

Shu R, Li X, Ge C, Wang L. Synthesis of FeCoNi/C decorated graphene composites derived from trimetallic metal-organic framework as ultrathin and high-performance electromagnetic wave absorbers. J Colloid Interface Sci 2023;630:754-62. https://doi.org/10.1016/j.jcis.2022.10.083.

[12]

Zhang X, Dong X, Huang H, Liu Y, Wang W, Zhu X, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl Phys Lett 2006;89:053115. https://doi.org/10.1063/1.2236965.

[13]

Sun G, Dong B, Cao M, Wei B, Hu C. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem Mater 2011;23:1587-93. https://doi.org/10.1021/cm103441u.

[14]

Shu R, Li X, Shi J. Construction of porous carbon-based magnetic composites derived from iron zinc bimetallic metal-organic framework as broadband and high-efficiency electromagnetic wave absorbers. J Colloid Interface Sci 2023;633:43-52. https://doi.org/10.1016/j.jcis.2022.11.078.

[15]

Quan B, Liang X, Zhang X, Xu G, Ji G, Du Y. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl Mater Interfaces 2018;10:41535-43. https://doi.org/10.1021/acsami.8b16088.

[16]

Wang C, Ding Y, Yuan Y, He X, Wu S, Hu S, et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J Mater Chem C 2015;3:11893-901. https://doi.org/10.1039/c5tc03127c.

[17]

Qiu X, Wang L, Zhu H, Guan Y, Zhang Q. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017;9:7408-18. https://doi.org/10.1039/c7nr02628e.

[18]

Wang L, Du Z, Xiang L, Hou D, Zhu S, Zhu J, et al. The ordered mesoporous carbon coated graphene as a high-performance broadband microwave absorbent. Carbon 2021;179:435-44. https://doi.org/10.1016/j.carbon.2021.04.048.

[19]

Du Y, Liu T, Yu B, Gao H, Xu P, Wang J, et al. The electromagnetic properties and microwave absorption of mesoporous carbon. Mater Chem Phys 2012;135:884-91. https://doi.org/10.1016/j.matchemphys.2012.05.074.

[20]

Zhou P, Zhang J, Zhu H, Wang L, Wang X, Song Z, et al. Silica-modified ordered mesoporous carbon for optimized impedance-matching characteristic enabling lightweight and effective microwave absorbers. ACS Appl Mater Interfaces 2020;12:23252-60. https://doi.org/10.1021/acsami.9b23287.

[21]

Zhou P, Wang X, Song Z, Wang M, Huang W, Yu M, et al. Multi-dimensional ordered mesoporous carbon/silica@Ni composite with hierarchical nanostructure for strong and broadband microwave absorption. Carbon 2021;176:209-18. https://doi.org/10.1016/j.carbon.2021.01.125.

[22]

Wang J, Wu F, Cui Y, Zhang A, Zhang Q, Zhang B. Efficient synthesis of N-doped porous carbon nanoribbon composites with selective microwave absorption performance in common wavebands. Carbon 2021;175:164-75. https://doi.org/10.1016/j.carbon.2021.01.005.

[23]

Wang L, Jia W, Liu X, Li J, Titirici MM. Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction. J Energy Chem 2016;25:566-70. https://doi.org/10.1016/j.jechem.2016.02.012.

[24]

Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J Am Chem Soc 2012;134:16127-30. https://doi.org/10.1021/ja306376s.

[25]

Liu Z, Zhang C, Luo L, Chang Z, Sun X. One-pot synthesis and catalyst support application of mesoporous N-doped carbonaceous materials. J Mater Chem 2012;22:12149-54. https://doi.org/10.1039/c2jm31007d.

[26]

Sathish M, Mitani S, Tomai T, Honma I. Supercritical fluid assisted synthesis of N-doped graphene nanosheets and their capacitance behavior in ionic liquid and aqueous electrolytes. J Mater Chem A 2014;2:4731-8. https://doi.org/10.1039/c3ta15136k.

[27]

Liu P, Gao S, Wang Y, Huang Y, Zhou F, Liu P. Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers. Carbon 2021;173:655-66. https://doi.org/10.1016/j.carbon.2020.11.043.

[28]

Lu XF, Zhang SL, Shangguan E, Zhang P, Gao S, Lou XWD. Nitrogen-doped cobalt pyrite yolk-shell hollow spheres for long-life rechargeable Zn-air batteries. Adv Sci 2020;7:2001178. https://doi.org/10.1002/advs.202001178.

[29]

Bai Y-W, Shi G, Gao J, Shi F-N. MOF decomposed for the preparation of Co3O4/N-doped carbon with excellent microwave absorption. J Solid State Chem 2020;288:121401. https://doi.org/10.1016/j.jssc.2020.121401.

[30]

Cheng J, Liu B, Wang Y, Zhao H, Wang Y. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption. J Mater Sci Technol 2022;130:157-65. https://doi.org/10.1016/j.jmst.2022.05.013.

[31]

Xu J, Shu R, Wan Z, Shi J. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption. J Mater Sci Technol 2023;132:193-200. https://doi.org/10.1016/j.jmst.2022.05.050.

[32]

Xu H, Li B, Jiang X, Shi Y, Zhang X, Zhu C, et al. Fabrication of N−doped carbon nanotube/carbon fiber dendritic composites with abundant interfaces for electromagnetic wave absorption. Carbon 2023;201:234-43. https://doi.org/10.1016/j.carbon.2022.09.033.

[33]

Chen J, Liang X, Zheng J, Gu W, Pei C, Fan F, et al. Modulating dielectric loss of mesoporous carbon fibers with radar cross section reduction performance via computer simulation technology. Inorg Chem Front 2021;8:758-65. https://doi.org/10.1039/d0qi01237h.

[34]

Zhao H, Cheng Y, Lv H, Zhang B, Ji G, Du Y. Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon. ACS Sustainable Chem Eng 2018;6:15850-7. https://doi.org/10.1021/acssuschemeng.8b04461.

[35]

Zhao H, Han X, Li Z, Liu D, Wang Y, Wang Y, et al. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber. J Colloid Interface Sci 2018;528:174-83. https://doi.org/10.1016/j.jcis.2018.05.046.

[36]

Shu R, Wan Z, Zhang J, Wu Y, Liu Y, Shi J, et al. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl Mater Interfaces 2020;12:4689-98. https://doi.org/10.1021/acsami.9b16134.

[37]

Yang J, Zhai Y, Deng Y, Gu D, Li Q, Wu Q, et al. Direct triblock-copolymer-templating synthesis of ordered nitrogen-containing mesoporous polymers. J Colloid Interface Sci 2010;342:579-85. https://doi.org/10.1016/j.jcis.2009.10.037.

[38]

Yang Z, Cui B, Bu Y, Wang Y. Preparation of flower-dewdrops Fe3O4/carbon-SiO2 microsphere for microwave-triggered drug delivery. J Alloys Compd 2019;775:826-35. https://doi.org/10.1016/j.jallcom.2018.10.164.

[39]

Guo L, An Q, Xiao Z, Zhai S, Cui L. Inherent N-doped honeycomb-like carbon/Fe3O4 composites with versatility for efficient microwave absorption and wastewater treatment. ACS Sustainable Chem Eng 2019;7:9237-48. https://doi.org/10.1021/acssuschemeng.9b00067.

[40]

Gao X, Zang W, Li X, Wang Z, Zheng L, Kou Z. Achieving efficient alkaline hydrogen evolution reaction on long-range Ni sites in Ru clusters-immobilized Ni3N array catalyst. Chem Eng J 2023;451:138698. https://doi.org/10.1016/j.cej.2022.138698.

[41]

Kong F, He X, Chen J, Tao S, Qian B, Jiang X, et al. Hierarchical Ni(HCO3)2 nanosheets anchored on carbon nanofibers as binder-free anodes for lithium-ion batteries. Energy Technol 2019;7:1900094. https://doi.org/10.1002/ente.201900094.

[42]

Yang M, Zhou Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv Sci 2017;4:1600408-17. https://doi.org/10.1002/advs.201600408.

[43]

Yin Y, Liu X, Wei X, Li Y, Nie X, Yu R, et al. Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces 2017;9:30850-61. https://doi.org/10.1021/acsami.7b10067.

[44]

Sharifi T, Hu G, Jia X, Wågberg T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012;6:8904-12.

[45]

Zheng Y, Zhang G, Zhang P, Chu S, Wu D, Sun C, et al. Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction. Chem Eng J 2022;429:132122. https://doi.org/10.1016/j.cej.2021.132122.

[46]

Lee WJ, Lim J, Kim SO. Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 2017;1:1600014. https://doi.org/10.1002/smtd.201600014.

[47]

Wu F, Liu Z, Wang J, Shah T, Liu P, Zhang Q, et al. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem Eng J 2021;422:130591. https://doi.org/10.1016/j.cej.2021.130591.

[48]

Gu W, Sheng J, Huang Q, Wang G, Chen J, Ji G. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett 2021;13:102. https://doi.org/10.1007/s40820-021-00635-1.

[49]

Gao T, Zhao R, Li Y, Zhu Z, Hu C, Ji L, et al. Sub-Nanometer Fe Clusters Confined in Carbon Nanocages for Boosting Dielectric Polarization and Broadband Electromagnetic Wave Absorption. Adv Funct Mater;32:2204370. https://doi.org/10.1002/adfm.202204370.

[50]

Song G, Gai L, Yang K, Wang X, An Q, Xiao Z, et al. A versatile N-doped honeycomb-like carbonaceous aerogels loaded with bimetallic sulfide and oxide for superior electromagnetic wave absorption and supercapacitor applications. Carbon 2021;181:335-47. https://doi.org/10.1016/j.carbon.2021.05.044.

[51]

Liu L, He N, Wu T, Hu P, Tong G. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem Eng J 2019;355:103-8. https://doi.org/10.1016/j.cej.2018.08.131.

[52]

Chen X, Jia Z, Feng A, Wang B, Tong X, Zhang C, et al. Hierarchical Fe3O4@carbon@MnO2 hybrid for electromagnetic wave absorber. J Colloid Interface Sci 2019;553:465-74. https://doi.org/10.1016/j.jcis.2019.06.058.

[53]

Quan B, Shi W, Ong SJH, Lu X, Wang PL, Ji G, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv Funct Mater 2019;29:1901236. https://doi.org/10.1002/adfm.201901236.

[54]

Cao MS, Wang XX, Zhang M, Cao WQ, Fang XY, Yuan J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv Mater 2020;32:1907156. https://doi.org/10.1002/adma.201907156.

[55]

Sun X, Yang M, Yang S, Wang S, Yin W, Che R, et al. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019;15:1902974. https://doi.org/10.1002/smll.201902974.

[56]

Xiong Y, Xu L, Yang C, Sun Q, Xu X. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J Mater Chem A 2020;8:18863-71. https://doi.org/10.1039/d0ta05540a.

[57]

Li H, Hou Y, Li L. Synthesis of the SiO2@C composites with high-performance electromagnetic wave absorption. Powder Technol 2019;343:129-36. https://doi.org/10.1016/j.powtec.2018.11.033.

[58]

Liu Q, Zhang D, Fan T. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl Phys Lett 2008;93:013110. https://doi.org/10.1063/1.2957035.

[59]

Qi X, Hu Q, Cai H, Xie R, Bai Z, Jiang Y, et al. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties. Sci Rep 2016;6:37972. https://doi.org/10.1038/srep37972.

[60]

Xu H, Yin X, Zhu M, Li M, Zhang H, Wei H, et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019;142:346-53. https://doi.org/10.1016/j.carbon.2018.10.056.

[61]

Liu X, Chen Y, Hao C, Ye J, Yu R, Huang D. Graphene-enhanced microwave absorption properties of Fe3O4/SiO2 nanorods. Composites, Part A 2016;89:40-6. https://doi.org/10.1016/j.compositesa.2016.02.006.

[62]

Ren Y, Yang L, Wang L, Xing H, Wu H. Microwave absorption properties of Fe-doped ordered mesoporous carbon (CMK-3)/Silica matrix nanocomposites with magnetic multi-resonance mechanisms. Nano 2015;10:1550110. https://doi.org/10.1142/s1793292015501106.

[63]

Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, et al. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 2016;28:486-90. https://doi.org/10.1002/adma.201503149.

Journal of Materiomics
Pages 190-199
Cite this article:
Zhou P, Zhang J, Song Z, et al. Defect engineering in N-doped OMC for lightweight and high-efficiency electromagnetic wave absorption. Journal of Materiomics, 2024, 10(1): 190-199. https://doi.org/10.1016/j.jmat.2023.05.008

97

Views

3

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 20 April 2023
Revised: 15 May 2023
Accepted: 20 May 2023
Published: 17 June 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return