AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

ZrNiSn-based compounds with high thermoelectric performance and ultralow lattice thermal conductivity via introduction of multiscale scattering centers

Ruonan MinaYanxia WangcXue JiangcRongchun ChenaMingyang LiaHuijun Kanga,b( )Xiong Yanga( )Zongning Chena,bEnyu Guoa,bTongmin Wanga,b( )
Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, China
Ningbo Institute of Dalian University of Technology, Ningbo, 315000, China
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The high lattice thermal conductivity of half-Heuslers (HHs) restricts the further enhancement of their thermoelectric figure-of-merit (ZT). In this study, multiscale scattering centers, such as point defects, dislocations, and nanoprecipitates, are synchronously introduced in a n-type ZrNiSn-based HH matrix through Nb doping and Hf substitution. The lattice thermal conductivity is substantially decreased from 4.55 (for the pristine ZrNiSn) to 1.8 W·m−1·K−1 at 1123 K via phonon scattering over a broad wavelength range through the adjustment of multiscale defects. This value is close to the theoretically estimated lowest thermal conductivity. The power factor (PF) is enhanced from 3.25 (for the pristine ZrNiSn) to 5.01 mW·m−1·K−2 for Zr0.66Hf0.30Nb0.04NiSn at 1123 K owing to the donor doping and band regulation via Nb doping and Hf substitution. This can be ascribed to the synergistic interaction between the lowering of the lattice thermal conductivity and retention of the high PF. Consequently, a ZT value of as high as 1.06 is achieved for Zr0.66Hf0.30Nb0.04NiSn at 1123 K. This work demonstrates that these actions are effective in jointly manipulating the transport of electrons and phonons, thereby improving the thermoelectric performance through defect engineering.

References

[1]

Qin DD, Cui B, Zhu JB, Shi WJ, Qin HX, Guo FK, et al. Enhanced thermoelectric and mechanical performance in n-type Yb-filled skutterudites through aluminum alloying. ACS Appl Mater Inter 2020;12:12930-7. https://doi.org/10.1021/acsami.0c01798.

[2]

Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321:1457-61. https://doi.org/10.1126/science.1158899.

[3]

Guo FK, Sun YX, Yin L, Feng Y, Shi WJ, Wu H, et al. Preliminary exploration of key technique for the application of thermoelectric SnTe in mid-temperature power generation. Acta Mater 2023;242:118455. https://doi.org/10.1016/j.actamat.2022.118455.

[4]

Guo FK, Zhu JB, Cui B, Sun YX, Zhang XH, Cai W, et al. Compromise of thermoelectric and mechanical properties in LiSbTe2 and LiBiTe2 alloyed SnTe. Acta Mater 2022;231:117922. https://doi.org/10.1016/j.actamat.2022.117922.

[5]

Liu M, Sun YX, Zhu JB, Li C, Guo FK, Liu ZH, et al. High performance GeTe thermoelectrics enabled by lattice strain construction. Acta Mater 2023;244:118565. https://doi.org/10.1016/j.actamat.2022.118565.

[6]

Biswas K, He JQ, Blum ID, Wu CI, Hogan TP, Seidamn DN, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012;489:414-8. https://doi.org/10.1038/nature11439.

[7]

Chai YW, Oniki T, Kimura Y. Microstructure and thermoelectric properties of a ZrNi1.1Sn half-heusler alloy. Acta Mater 2015;85:290-300. https://doi.org/10.1016/j.actamat.2014.11.042.

[8]

Chen S, Lukas KC, Liu WS, Opeil CP, Chen G, Ren ZF. Effect of hf concentration on thermoelectric properties of nanostructured n-type half-heusler materials HfxZr1-xNiSn0.99Sb0.01. Adv Energy Mater 2013;3:1210-4. https://doi.org/10.1002/aenm.201300336.

[9]

Liu WS, Yan X, Chen G, Ren ZF. Recent advances in thermoelectric nanocomposites. Nano Energy 2012;1:42-56. https://doi.org/10.1016/j.nanoen.2011.10.001.

[10]

Mallick MM, Rajput K, Vitta S. Increasing figure-of-merit of ZrNiSn half-heusler alloy by minimal substitution and thermal conductivity reduction. J Mater Sci Mater Elc 2019;30:6139-47. https://doi.org/10.1007/s10854-019-00915-y.

[11]

Liu YT, Xie HH, Fu CG, Snyder GJ, Zhao XB, Zhu TJ. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-heusler thermoelectric materials by alloying. J Mater Chem A 2015;3:22716-22. https://doi.org/10.1039/c5ta04418a.

[12]

Liu YF, Sahoo P, Makongo JPA, Zhou XY, Kim SJ, Chi H, et al. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J Am Chem Soc 2013;135:7486-95. https://doi.org/10.1021/ja311059m.

[13]

Krez J, Schmitt J, Snyder GJ, Felser C, Hermes W, Schwind M. Optimization of the carrier concentration in phase-separated half-heusler compounds. J Mater Chem A 2014;2:13513-8. https://doi.org/10.1039/C4TA03000A.

[14]

Sootsman JR, Chung DY, Kanatzidis MG. New and old concepts in thermoelectric materials. Angew Chem Int Ed 2009;48:8616-39. https://doi.org/10.1002/anie.200900598.

[15]

Guo FK, Sun YX, Qin HX, Zhu YK, Liu ZH, Ge ZH, et al. BiSbTe alloy with high thermoelectric and mechanical performance for power generation. Scr Mater 2022;218:114801. https://doi.org/10.1016/j.scriptamat.2022.114801.

[16]

Yang X, Jiang Z, Kang HJ, Chen ZN, Guo EY, Liu DQ, et al. Enhanced thermoelectric performance of ZrTaNiSn half-heusler alloys by diagonal-rule doping. ACS Appl Mater Inter 2020;12:3773-83. https://doi.org/10.1021/acsami.9b21517.

[17]

Zhang H, Wang Y, Dahal K, Mao J, Huang LH, Zhang QY, et al. Thermoelectric properties of n-type half-heusler compounds (Hf0.25Zr0.75)1-xNbxNiSn. Acta Mater 2016;113:41-7. https://doi.org/10.1016/j.actamat.2016.04.039.

[18]

Tobola J, Pierre J, Kaprzyk S, Skolozdra RV, Kouacou MA. Crossover from semiconductor to magnetic metal in semi-heusler phases as a function of valence electron concentration. J Phys Condens Matter 1998;10:1013. https://doi.org/10.1088/0953-8984/10/5/011.

[19]

Yang J, Li HM, Wu T, Zhang WQ, Chen LD, Yang JH. Evaluation of half-heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv Funct Mater 2008;18:2880-8. https://doi.org/10.1002/adfm.200701369.

[20]

Kimura Y, Tamura Y, Kita T. Thermoelectric properties of directionally solidified half-heusler compound nbcosn alloys. Appl Phys Lett 2008;92:012105. https://doi.org/10.1063/1.2828713.

[21]

Fu CG, Zhu TJ, Pei YZ, Xie HH, Wang H, Snyder GJ, et al. High band degeneracy contributes to high thermoelectric performance in p-type half-heusler compounds. Adv Energy Mater 2014;4:1400600. https://doi.org/10.1002/aenm.201400600.

[22]

Huang LH, Wang YM, Shuai J, Zhang H, Yang SQ, Zhang QY, et al. Thermal conductivity reduction by isoelectronic elements V and Ta for partial substitution of Nb in half-heusler Nb(1-x)/2V(1-x)/2TaxCoSb. RSC Adv 2015;5:102469-76. https://doi.org/10.1039/C5RA21404A.

[23]

Xia KY, Hu CL, Fu CG, Zhao XB, Zhu TJ. Half-heusler thermoelectric materials. Appl Phys Lett 2021;118:140503. https://doi.org/10.1063/5.0043552.

[24]

Huang LH, He R, Chen S, Zhang H, Dahal K, Zhou HQ, et al. A new n-type half-heusler thermoelectric material NbCoSb. Mater Res Bull 2015;70:773-8. https://doi.org/10.1016/j.materresbull.2015.06.022.

[25]

Fu CG, Bai SQ, Liu YT, Tang YS, Chen LD, Zhao XB, et al. Realizing high figure of merit in heavy-band p-type half-heusler thermoelectric materials. Nat Commun 2015;6:8144. https://doi.org/10.1038/ncomms9144.

[26]

Gong B, Li Y, Liu FS, Zhu JX, Wang X, Ao WQ, et al. Continuously enhanced structural disorder to suppress the lattice thermal conductivity of ZrNiSn-based half-heusler alloys by multielement and multisite alloying with very low hf content. ACS Appl Mater Inter 2019;11:13397-404. https://doi.org/10.1021/acsami.9b00648.

[27]

Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Johari KK, Gahtori B, et al. Enhanced thermoelectric performance in p-type ZrCoSb based half-heusler alloys employing nanostructuring and compositional modulation. J Materiomics 2019;5:94-102. https://doi.org/10.1016/j.jmat.2018.11.003.

[28]

Zhu HT, Mao J, Li YW, Sun JF, Wang YM, Zhu Q, et al. Discovery of TaFeSb-based half-heuslers with high thermoelectric performance. Nat Commun 2019;10:270. https://doi.org/10.1038/s41467-018-08223-5.

[29]

Naydenov GA, Hasnip PJ, Lazarov VK, Probert MIJ. Huge power factor in p-type half-heusler alloys NbFeSb and TaFeSb. J Phy Mater 2019;2:035002. https://doi.org/10.1088/2515-7639/ab16fb.

[30]

Zhu HT, He R, Mao J, Zhu Q, Li CH, Sun JF, et al. Discovery of ZrCoBi based half heuslers with high thermoelectric conversion efficiency. Nat Commun 2018;9:2497. https://doi.org/10.1038/s41467-018-04958-3.

[31]

Fu CG, Zhu TJ, Liu YT, Xie HH, Zhao XB. Band engineering of high performance p-type FeNbSb based half-heusler thermoelectric materials for figure of merit ZT > 1. Energ Environ Sci 2015;8:216-20. https://doi.org/10.1039/C4EE03042G.

[32]

Shen JJ, Fu CG, Liu YT, Zhao XB, Zhu TJ. Enhancing thermoelectric performance of fenbsb half-heusler compound by Hf-Ti dual-doping. Energy Storage Mater 2018;10:69-74. https://doi.org/10.1016/j.ensm.2017.07.014.

[33]

Chuhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Johari KK, Gahtori B, et al. Compositional tuning of ZrNiSn half-Heusler alloys: thermoelectric characteristics and performance analysis. J Phys Chem Solids 2018;123:105-12. https://doi.org/10.1016/j.jpcs.2018.07.012.

[34]

Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A, et al. Vanadium-doping-induced resonant energy levels for the enhancement of thermoelectric performance in Hf-free ZrNiSn half-heusler alloys. ACS. Appl. Energ. Mater 2018;1:757-64. https://doi.org/10.1021/acsaem.7b00203.

[35]

Johari KK, Bhardwaj R, Chauhan NS, Bathula S, Auluck S, Dhakate SR, et al. High thermoelectric performance in n-type degenerate ZrNiSn-based half-heusler alloys driven by enhanced weighted mobility and lattice anharmonicity. ACS Appl Energ Mater 2021;4:3393-403. https://doi.org/10.1021/acsaem.0c03152.

[36]

Johari KK, Bhardwaj R, Chauhan NS, Gahtori B, Bathula S, Auluck S, et al. Band structure modification and mass fluctuation effects of isoelectronic germanium-doping on thermoelectric properties of ZrNiSn. ACS Appl Energ Mater 2020;3:1349-57. https://doi.org/10.1021/acsaem.9b01740.

[37]

Chauhan NS, Raghuvanshi PR, Tyagi K, Johari KK, Tyagi L, Gahtori B, et al. Defect engineering for enhancement of thermoelectric performance of (Zr, Hf)NiSn-based n-type half-heusler alloys. J Phys Chem C 2020;124:8584-93. https://doi.org/10.1021/acs.jpcc.0c00681.

[38]

Chauhan NS, Bathula S, Gahtori B, Mahanti SD, Bhattacharya A, Vishwakarma A, et al. Compositional tailoring for realizing high thermoelectric performance in hafnium-free n-type ZrNiSn half-heusler alloys. ACS Appl Mater Interfaces 2019;11:47830-6. https://doi.org/10.1021/acsami.9b12599.

[39]

Yang X, Wang YX, Min RN, Chen ZN, Guo EY, Kang HJ, et al. Enhancement in thermoelectric properties of ZrNiSn-based alloys by ta doping and hf substitution. Acta Mater 2022;233:117976. https://doi.org/10.1016/j.actamat.2022.117976.

[40]

Joshi G, Yan X, Wang HZ, Liu WS, Chen G, Ren ZF. Enhancement in thermoelectric figure-of-merit of an n-type half-heusler compound by the nanocomposite approach. Adv Energy Mater 2011;1:643-7. https://doi.org/10.1002/aenm.201100126.

[41]

Johari KK, Sharma DK, Verma AK, Bhardwaj R, Chauhan NS, Kumar S, et al. In situ evolution of secondary metallic phases in off-stoichiometric ZrNiSn for enhanced thermoelectric performance. ACS Appl Mater Interfaces 2022;17:19579-93. https://doi.org/10.1021/acsami.2c03065.

[42]

Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Srivastava AK, et al. A nanocomposite approach for enhancement of thermoelectric performance in Hafnium-free Half-Heuslers. Materialia 2018;1:168-74. https://doi.org/10.1016/j.mtla.2018.05.006.

[43]

Jiang BB, Wang W, Liu SX, Wang Y, Wang CF, Chen YN, et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 2022;377:208-13. https://doi.org/10.1126/science.abq5815.

[44]

Dado B, Gelbstein Y, Dariel MP. Nucleation of nanosize particles following the spinodal decomposition in the pseudo-ternary Ge0.6Sn0.1Pb0.3Te compound. Scr Mater 2010;62:89-92. https://doi.org/10.1016/j.scriptamat.2009.09.029.

[45]

Liu HT, Sun Q, Zhong Y, Deng Q, Gan L, Lv FL, et al. High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering. Nano Energy 2022;91:106706. https://doi.org/10.1016/j.nanoen.2021.106706.

[46]

Sadia Y, Elegrably M, Ben-Num O, Marciano Y, Gelbstein Y. Submicron features in higher manganese silicide. J Nanomater 2013;2013:701268. https://doi.org/10.1155/2013/701268.

[47]

Ciesielski K, Synoradzki K, Veremchuk I, Skokowaki P, Szymanski D, Grin Y, et al. Thermoelectric performance of the half-heusler phases R Ni Sb (R= Sc, Dy, Er, Tm, Lu): high mobility ratio between majority and minority charge carriers. Phys Rev Appl 2020;14:054046. https://doi.org/10.1103/PhysRevApplied.14.054046.

[48]

Ferluccio DA, Kennedy BF, Barczak SA, Popuri SR, Murray C, Pollet M, et al. Thermal properties of TiNiSn and VFeSb half-heusler thermoelectrics from synchrotron x-ray powder diffraction. J Phy Energy 2021;3:035001. https://doi.org/10.1088/2515-7655/abf41a.

[49]

Min RN, Wang YX, Jiang X, Chen RC, Kang HJ, Guo EY, et al. Significantly improved thermoelectric properties of Nb-doped ZrNiSn half-heusler compounds. Chem Eng J 2022;449:137898. https://doi.org/10.1016/j.cej.2022.137898.

[50]

Zhu TJ, Fu CG, Xie HH, Liu YT, Zhao XB. High efficiency half-heusler thermoelectric materials for energy harvesting. Adv Energy Mater 2015;5:1500588. https://doi.org/10.1002/aenm.201500588.

[51]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133-8. https://doi.org/10.1103/PhysRev.140.A1133.

[52]

Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;55:11169-74. https://doi.org/10.1103/PhysRevB.54.11169.

[53]

Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15. https://doi.org/10.1016/0927-0256(96)00008-0.

[54]

Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953-79. https://doi.org/10.1103/PhysRevB.50.17953.

[55]

Perdew PJ, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865. https://doi.org/10.1103/PhysRevLett.77.3865.

[56]

Chen MX, Chen W, Zhang ZY, Weinert M. Effects of magnetic dopants in (Li0.8M0.2OH)FeSe (M = Fe, Mn, Co): a density-functional theory study using band unfolding technique. Phys Rev B 2017;96:245111. https://doi.org/10.1103/PhysRevB.96.245111.

[57]

Chen MX, Weinert M. Layer k-projection for unfolding electronic bands of interfaces. Phys Rev B 2018;98:245421. https://doi.org/10.1103/PhysRevB.98.245421.

[58]

Gürth M, Rogl G, Romaka VV, Grytsiv A, Bauer E, Rogl P. Thermoelectric high ZT half-heusler alloys Ti1-x-yZrxHfyNiSn (0 ≤x≤ 1; 0 ≤y≤ 1). Acta Mater 2016;104:210-22. https://doi.org/10.1016/j.actamat.2015.11.022.

[59]

Xie HH, Mi JL, Lock N, Chrictensen M, Fu CG, Iversen BB, et al. Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. Cryst Eng Comm 2012;14:4467-71. https://doi.org/10.1039/C2CE25119A.

[60]

Yang X, Jiang Z, Li JB, Kang HJ, Liu DQ, Yang FF, et al. Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties. Nano Energy 2020;78:105372. https://doi.org/10.1016/j.nanoen.2020.105372.

[61]

He JQ, Sootsman JR, Girard SN, Zheng JC, Wen JG, Zhu YM, et al. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. J Am Chem Soc 2010;132:8669-75. https://doi.org/10.1021/ja1010948.

[62]

Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater 2017;29:1605884. https://doi.org/10.1002/adma.201605884.

[63]

Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008;321:554-7. https://doi.org/10.1126/science.1159725.

[64]

Liu YT, Fu CG, Xia KY, Yu JJ, Zhao XB, Pan HG, et al. Lanthanide contraction as a design factor for high-performance half-heusler thermoelectric materials. Adv Mater 2018;30:1800881. https://doi.org/10.1002/adma.201800881.

[65]

Gałązka K, Populoh S, Xie WJ, Yoon S, Saucke G, Hulliger J, et al. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-heusler compounds by Ta substitution. J Appl Phys 2014;115:183704. https://doi.org/10.1063/1.4874798.

[66]

Zhu TJ, Xiao K, Yu C, Shen JJ, Yang SH, Zhou AJ, et al. Effects of yttrium doping on the thermoelectric properties of Hf0.6Zr0.4NiSn0.98Sb0.02 half-heusler alloys. J Appl Phys 2010;108:044903. https://doi.org/10.1063/1.3475719.

[67]

Xie HH, Wang H, Fu CG, Liu YT, Snyder GJ, Zhao XB, et al. The intrinsic disorder related alloy scattering in ZrNiSn half-heusler thermoelectric materials. Sci Rep 2014;4:6888. https://doi.org/10.1038/srep06888.

[68]

Li XF, Yang PB, Wang YM, Zhang ZW, Qin DD, Xue WH, et al. Phase boundary mapping in ZrNiSn half-heusler for enhanced thermoelectric performance. Research 2020;2020:4630948. https://doi.org/10.34133/2020/4630948.

[69]

Xing YF, Liu RH, Liao JC, Zhang QH, Xia XG, Wang C, et al. High-efficiency half-heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energ Environ Sci 2019;12:3390-9. https://doi.org/10.1039/C9EE02228G.

[70]

Li G, Gadelrab KR, Souier T, Potapov PL, Chen G, Chiesa M. Mechanical properties of BixSb2-xTe3 nanostructured thermoelectric material. Nanotechnology 2012;23:065703. https://doi.org/10.1088/0957-4484/23/6/065703.

[71]

Li B, Ping X, Zhang SY, Liu DQ. Lead germanium telluride: a mechanically robust infrared high-index layer. J Mater Sci 2011;46:4000-4. https://doi.org/10.1007/s10853-011-5327-9.

[72]

Schmidt RD, Case ED, Zhao LD, Kanatzidis MG. Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0–4% Cds or ZnS. J Mater Sci 2015;50:1770-82. https://doi.org/10.1007/s10853-014-8740-z.

[73]

Schmidt RD, Case ED, Ni JE, Trejo RM, Lara CE, Korkosz RJ, et al. High-temperature elastic moduli of thermoelectric SnTex-y SiC nanoparticulate composites. J Mater Sci 2013;48:8244-58. https://doi.org/10.1007/s10853-013-7637-6.

[74]

Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater 2016;1:16019. https://doi.org/10.1016/S1359-6454(99)00285-2.

Journal of Materiomics
Pages 200-209
Cite this article:
Min R, Wang Y, Jiang X, et al. ZrNiSn-based compounds with high thermoelectric performance and ultralow lattice thermal conductivity via introduction of multiscale scattering centers. Journal of Materiomics, 2024, 10(1): 200-209. https://doi.org/10.1016/j.jmat.2023.05.009

224

Views

4

Crossref

6

Web of Science

6

Scopus

Altmetrics

Received: 20 April 2023
Revised: 16 May 2023
Accepted: 26 May 2023
Published: 17 June 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return