AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improved ferroelectric properties of CMOS back-end-of-line compatible Hf0.5Zr0.5O2 thin films by introducing dielectric layers

Changfan JuaBinjian Zenga( )Ziqi LuoaZhibin YangaPuqi HaoaLuocheng LiaoaQijun YangbQiangxiang Penga( )Shuaizhi ZhengaYichun ZhoubMin Liaoa,b( )
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Hf0.5Zr0.5O2 (HZO) ferroelectric thin films have gained significant attention for the development of next-generation ferroelectric memories by complementary-metal-oxide semiconductor (CMOS) back-end-of-line (BEOL) processing, due to their relatively low crystallization temperature. However, it remains challenging to achieve excellent ferroelectric properties with post deposition annealing (PDA) process at a BEOL compatible temperature. Along these lines, in this work, it is demonstrated that the ferroelectricity of 15 nm thick HZO thin film prepared by PDA process at 400 °C can be improved to varying degrees, via depositing 2 nm thick dielectric layers of Al2O3, HfO2, or ZrO2 at either the bottom or the top of the film. Notably, the HZO thin film with the top-Al2O3 layer exhibits remarkable ferroelectric properties, which are independent of the thickness of HZO. The 6 nm thick HZO thin film shows a total remanent polarization (2Pr) of 31 μC/cm2 under an operating voltage of 2.5 V. These results represent a significant advancement in the fabrication of high-performance, BEOL compatible ferroelectric memories, as compared to previously reported state-of-the-art works.

References

[1]

Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E. Memory devices and applications for in-memory computing. Nat Nanotechnol 2020;15(7):529–44. https://doi.org/10.1038/s41565-020-0655-z.

[2]

Lanza M, Sebastian A, Lu WD, Le Gallo M, Chang MF, Akinwande D, et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 2022;376(6597):eabj9979. https://doi.org/10.1126/science.abj9979.

[3]

Chai XJ, Jiang J, Zhang QH, Hou X, Meng FQ, Wang J, et al. Nonvolatile ferroelectric field-effect transistors. Nat Commun 2020;11(1):2811. https://doi.org/10.1038/s41467-020-16623-9.

[4]

Cheema SS, Kwon D, Shanker N, Dos Reis R, Hsu SL, Xiao J, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020;580(7804):478–82. https://doi.org/10.1038/s41586-020-2208-x.

[5]

Zeng BJ, Liu C, Dai SW, Zhou PA, Bao KY, Zheng SZ, et al. Electric field gradient-controlled domain switching for size effect-resistant multilevel operations in HfO2-based ferroelectric field-effect transistor. Adv Funct Mater 2021;31(17):2011077. https://doi.org/10.1002/adfm.202011077.

[6]

Liu C, Zeng BJ, Dai SW, Zheng SZ, Peng QX, Xiang JJ, et al. Robustly stable intermediate memory states in HfO2-based ferroelectric field-effect transistors. J Materiomics 2022;8(3):685–92. https://doi.org/10.1016/j.jmat.2021.11.003.

[7]

Park MH, Kim HJ, Kim YJ, Lee W, Moon T, Hwang CS. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl Phys Lett 2013;102(24):242905. https://doi.org/10.1063/1.4811483.

[8]

Toprasertpong K, Tahara K, Fukui T, Lin Z, Watanabe K, Takenaka M, et al. Improved ferroelectric/semiconductor interface properties in Hf0.5Zr0.5O2 ferroelectric FETs by low-temperature annealing. IEEE Electron Device Lett 2020;41(10):1588–91. https://doi.org/10.1109/LED.2020.3019265.

[9]

Kim SJ, Narayan D, Lee JG, Mohan J, Lee JS, Lee J, et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget. Appl Phys Lett 2017;111(24):242901. https://doi.org/10.1063/1.4995619.

[10]

Datta S, Dutta S, Grisafe B, Smith J, Srinivasa S, Ye H. Back-end-of-line compatible transistors for monolithic 3-D integration. IEEE Micro 2019;39(6):8–15. https://doi.org/10.1109/MM.2019.2942978.

[11]

Wu J, Mo F, Saraya T, Hiramoto T, Kobayashi M. A monolithic 3D integration of RRAM array with oxide semiconductor FET for in-memory computing in quantized neural network AI applications. IEEE Symp VLSI Technol 2020;2020:1–2. https://doi.org/10.1109/VLSITechnology18217.2020.9265062.

[12]

Aabrar KA, Gomez J, Kirtania SG, Jose MS, Luo Y, Ravikumar PG, et al. BEOL compatible superlattice FerroFET-based high precision analog weight cell with superior linearity and symmetry. IEEE Int Electron Dev Meet (IEDM) 2021;2021 19.6.1-19.6.4. https://doi.org/10.1109/IEDM19574.2021.9720713.

[13]

Lin Z, Si M, Luo YC, Lyu X, Charnas A, Chen Z, et al. High-performance BEOL-compatible atomic-layer-deposited In2O3 Fe-FETs enabled by channel length scaling down to 7 nm: achieving performance enhancement with large memory window of 2.2 V, long retention > 10 years and high endurance>108 cycles. IEEE Int Electron Dev Meet (IEDM) 2021;2021 17.4.1-17.417.4.4. https://doi.org/10.1109/IEDM19574.2021.9720652.

[14]

Francois T, Coignus J, Makosiej A, Giraud B, Carabasse C, Barbot J, et al. High-performance operation and solder reflow compatibility in BEOL-integrated 16-kb HfO2: Si-based 1T-1C FeRAM arrays. IEEE Trans Electron Dev 2022;69(4):2108–14. https://doi.org/10.1109/TED.2021.3138360.

[15]
Francois T, Grenouillet L, Coignus J, Blaise P, Carabasse C, Vaxelaire N, et al. Demonstration of BEOL-compatible ferroelectric Hf0.5Zr0.5O2 scaled FeRAM co-integrated with 130nm CMOS for embedded NVM applications. In: 2019 IEEE int electron devices meet (IEDM); 2019. https://doi.org/10.1109/IEDM19573.2019.8993485. 15.7.1-15.7.4.
[16]

Huang W, Zhu H, Zhang Y, Xiang J, Li J, Yang H, et al. HfO2-based ferroelectric field-effect-transistor with large memory window and good synaptic behavior. ECS J Solid State Sci Technol 2021;10(6):065012. https://doi.org/10.1149/2162-8777/ac08dd.

[17]

Kim MK, Kim IJ, Lee JS. Oxide semiconductor-based ferroelectric thin-film transistors for advanced neuromorphic computing. Appl Phys Lett 2021;118(3):032902. https://doi.org/10.1063/5.0035741.

[18]

Choe G, Shim W, Wang P, Hur J, Khan AI, Yu S. Impact of random phase distribution in ferroelectric transistors-based 3-D NAND architecture on in-memory computing. IEEE Trans Electron Dev 2021;68(5):2543–8. https://doi.org/10.1109/ted.2021.3068086.

[19]

Cheema SS, Shanker N, Wang LC, Hsu CH, Hsu SL, Liao YH, et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 2022;604(7904):65–71. https://doi.org/10.1038/s41586-022-04425-6.

[20]

Park MH, Lee YH, Kim HJ, Kim YJ, Moon T, Kim KD, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv Mater 2015;27(11):1811–31. https://doi.org/10.1002/adma.201404531.

[21]

Müller J, Böscke TS, Schröder U, Mueller S, Bräuhaus D, Böttger U, et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett 2012;12(8):4318–23. https://doi.org/10.1021/nl302049k.

[22]

Park MH, Lee YH, Kim HJ, Kim YJ, Moon T, Kim KD, et al. Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films. Nanoscale 2018;10(2):716–25. https://doi.org/10.1039/C7NR06342C.

[23]

Shiraishi T, Katayama K, Yokouchi T, Shimizu T, Oikawa T, Sakata O, et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl Phys Lett 2016;108(26):262904. https://doi.org/10.1063/1.4954942.

[24]

Jung YC, Kim JH, Hernandez-Arriaga H, Mohan J, Hwang SM, Le DN, et al. Robust low-temperature (350 °C) ferroelectric Hf0.5Zr0.5O2 fabricated using anhydrous H2O2 as the ALD oxidant. Appl Phys Lett 2022;121(22):222901. https://doi.org/10.1063/5.0126695.

[25]

Wang CI, Wang CY, Chang TJ, Jiang YS, Shyue JJ, Lin HC, et al. Atomic layer deposited TiN capping layer for sub-10 nm ferroelectric Hf0.5Zr0.5O2 with large remnant polarization and low thermal budget. Appl Surf Sci 2021;570:151152. https://doi.org/10.1016/j.apsusc.2021.151152.

[26]

Kim MK, Lee JS. Ferroelectric analog synaptic transistors. Nano Lett 2019;19(3):2044–50. https://doi.org/10.1021/acs.nanolett.9b00180.

[27]

McGuire FA, Lin YC, Price K, Rayner GB, Khandelwal S, Salahuddin S, et al. Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett 2017;17(8):4801–6. https://doi.org/10.1021/acs.nanolett.7b01584.

[28]

Wang JL, Wang D, Li Q, Zhang AH, Gao D, Guo M, et al. Excellent ferroelectric properties of Hf0.5Zr0.5O2 thin films induced by Al2O3 dielectric layer. IEEE Electron Device Lett 2019;40(12):1937–40. https://doi.org/10.1109/LED.2019.2950916.

[29]

Onaya T, Nabatame T, Sawamoto N, Ohi A, Ikeda N, Nagata T, et al. Improvement in ferroelectricity of HfxZr1-xO2 thin films using top- and bottom-ZrO2 nucleation layers. Apl Mater 2019;7(6):061107. https://doi.org/10.1063/1.5096626.

[30]

Peng HK, Lai TC, Kao YC, Liu CM, Wu PJ, Wu YH. Improved reliability for back-end-of-line compatible ferroelectric capacitor with 3 bits/cell storage capability by interface engineering and post deposition annealing. IEEE Electron Device Lett 2022;43(12):2180–3. https://doi.org/10.1109/LED.2022.3218253.

[31]

Park MH, Schenk T, Fancher CM, Grimley ED, Zhou C, Richter C, et al. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants. J Mater Chem C 2017;5(19):4677–90. https://doi.org/10.1039/C7TC01200D.

[32]

Zhang Y, Fan Z, Wang D, Wang J, Zou Z, Li Y, et al. Enhanced ferroelectric properties and insulator–metal transition-induced shift of polarization-voltage hysteresis loop in VOx-capped Hf0.5Zr0.5O2 thin films. ACS Appl Mater Interfaces 2020;12(36):40510–7. https://doi.org/10.1021/acsami.0c10964.

[33]

Park MH, Kim HJ, Kim YJ, Moon T, Hwang CS. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl Phys Lett 2014;104(7):072901. https://doi.org/10.1063/1.4866008.

[34]

Jakschik S, Schroeder U, Hecht T, Gutsche M, Seidl H, Bartha JW. Crystallization behavior of thin ALD-Al2O3 films. Thin Solid Films 2003;425(1–2):216–20. https://doi.org/10.1016/S0040-6090(02)01262-2.

[35]

Müller J, Schröder U, Böscke TS, Müller I, Böttger U, Wilde L, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys 2011;110(11):114113. https://doi.org/10.1063/1.3667205.

[36]

Balke N, Maksymovych P, Jesse S, Herklotz A, Tselev A, Eom CB, et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 2015;9(6):6484–92. https://doi.org/10.1021/acsnano.5b02227.

[37]

Qiao H, Kwon O, Kim Y. Electrostatic effect on off-field ferroelectric hysteresis loop in piezoresponse force microscopy. Appl Phys Lett 2020;116(17):172901. https://doi.org/10.1063/5.0004532.

Journal of Materiomics
Pages 277-284
Cite this article:
Ju C, Zeng B, Luo Z, et al. Improved ferroelectric properties of CMOS back-end-of-line compatible Hf0.5Zr0.5O2 thin films by introducing dielectric layers. Journal of Materiomics, 2024, 10(2): 277-284. https://doi.org/10.1016/j.jmat.2023.05.013

223

Views

6

Crossref

6

Web of Science

9

Scopus

Altmetrics

Received: 11 April 2023
Revised: 12 May 2023
Accepted: 30 May 2023
Published: 24 June 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return