AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Quantifying structural distortion manipulation for desired perovskite phase: Part Ⅰ. Paradigm demonstration in tungsten oxides

Cheng Fanga,bHong Wanga,b,c,d( )Siqi Shie,f,( )
State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing, 100024, China
Beijing Key Laboratory of Solar Energy and Building Energy-saving Glass Materials Processing Technology, China Building Materials Academy, Beijing, 100024, China
Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, 200240, China
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
Materials Genome Institute, Shanghai University, Shanghai, 200444, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Slight distortions can cause dramatic changes in the properties of crystalline perovskite materials and their derivatives. Due to the numerous types of distortions and unclarified distortion-structure relations, a quantitative distortion manipulation for the desired crystalline phase of perovskite materials suitable for various application remains challenging. Here, by establishing parameter sets to systematically describe the types, magnitudes and positional relations involved in distortions, we are able to interpret the structural regulations and manipulation strategies in 7 reported crystal systems. Through the construction of distortion-phase-property functional curves, we further propose a paradigm to quantify the structural distortion manipulation for desired perovskite phases. Using the example of perovskite-like tungsten oxides, we successfully quantify their volume shrinkage and symmetry increase during lithiation. This work verifies that the complicated research and development of perovskite materials can be simplified into a mathematical problem solving process, which will inspire researchers with different backgrounds to participate, especially mathematicians and computer scientists.

References

[1]
Wadhawan V. Introduction to ferroic materials. London: CRC Press Taylor & Francis Group; 2000.
[2]

Meyer K-C, Koch L, Albe K. Phase transformations in the relaxor Na1/2Bi1/2TiO3 studied by means of density functional theory calculations. J Am Ceram Soc 2018;101:472–82.

[3]

Li ZY, Cho YJ, Li X, Li XY, Aimi A, Inaguma Y, et al. New mechanism for ferroelectricity in the perovskite Ca2-xMnxTi2O6 synthesized by spark plasma sintering. J Am Chem Soc 2018;140:2214–20.

[4]

Chakhmouradian AR, Ross K, Mitchell RH, Swainson I. The crystal chemistry of synthetic potassium-bearing neighborite, (Na1-xKx)MgF3. Phys Chem Miner 2001;28:277–84.

[5]

Lanfredi S, Gênova DHM, Brito IAO, Lima ARF, Nobre MAL. Structural characterization and Curie temperature determination of a sodium strontium niobate ferroelectric nanostructured powder. J Solid State Chem 2011;184:990–1000.

[6]

García-Martín S, Alario-Franco MA, Ehrenberg H, Rodríguez-Carvajal J, Amador U. Crystal structure and microstructure of some LaLiTiO3 oxides: an example of the complementary use of electron diffraction and microscopy and synchrotron X-ray diffraction to study complex materials. J Am Chem Soc 2004;126:3587–96.

[7]

Megaw HD, Darlington CNW. Geometrical and structural relations in the rhombohedral perovskites. Acta Crystallogr 1975;A31:161–73.

[8]

King G, Woodward PM. Cation ordering in perovskites. J Mater Chem 2010;20:5785–96.

[9]

Haumont R, Kornev IA, Lisenkov S, Bellaiche L, Kreisel J, Dkhil B. Phase stability and structural temperature dependence in powdered multiferroic BiFeO3. Phys Rev B 2008;78:134108.

[10]

Moriyama T, Kan A, Ogawa H. Crystal structure and ferroelectric properties of Ca(Cu3-xMx)Ti4O12 (M = Fe and Ni) ceramics. Mater Sci Eng B 2013;178:875–80.

[11]

Drathen C, Nakagawa T, Crichton WA, Hill AH, Ohishi Y, Margadonna S. Structural transition in KMnCrF6 – a chemically ordered magnetic ferroelectric. J Mater Chem C 2015;3:4321–32.

[12]

Vailionis A, Boschker H, Siemons W, Houwman EP, Blank DHA, Rijnders G, et al. Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations. Phys Rev B 2011;83:064101.

[13]

Barnes PW, Lufaso MW, Woodward PM. Structure determination of A2M3+TaO6 and A2M3+NbO6 ordered perovskites: octahedral tilting and pseudosymmetry. Acta Crystallogr 2006;B62:384–96.

[14]

Zhang YR, Motohashi T, Masubuchi Y, Kikkawa S. Local anionic ordering and anisotropic displacement in dielectric perovskite SrTaO2N. J Ceram Soc Jpn 2011;119:581–6.

[15]

Haumont R, Bouvier P, Pashkin A, Rabia K, Frank S, Dkhil B, et al. Effect of high pressure on multiferroic BiFeO3. Phys Rev B 2009;79:184110.

[16]

Karlsson M, Matic A, Knee CS, Ahmed I, Eriksson SG, Börjesson L. Short-range structure of proton-conducting perovskite BaInxZr1-xO3-x/2 (x = 0–0.75). Chem Mater 2008;20:3480–6.

[17]

Yang RX, Skelton JM, da Silva EL, Frost JM, Walsh A. Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. J Chem Phys 2020;152:024703.

[18]

Bechtel JS, der Ven AV. Octahedral tilting instabilities in inorganic halide perovskites. Phys. Rev. Mater. 2018;2:025401.

[19]

Kalaiselvi CR, Senthil TS, Shankar MV, Sasirekha V. Solvothermal fusion of Ag- and N-doped LiTaO3 perovskite nanospheres for improved photocatalytic hydrogen production. Appl Organomet Chem 2021;35:e6207.

[20]

Darlington CNW, Knight KS. High-temperature phases of NaNbO3 and NaTaO3. Acta Crystallogr 1999;B55:24–30.

[21]

Gómez-Salces S, Aguado F, Rodríguez F, Valiente R, González J, Haumont R, et al. Effect of pressure on the band gap and the local FeO6 environment in BiFeO3. Phys Rev B 2012;85:144109.

[22]

Ahn KH, Lookman T, Bishop AR. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 2004;428:401–4.

[23]

Fischer P, Polomska M, Sosnowska I, Szymanski M. Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C Solid State Phys 1980;13:1931–40.

[24]

Kim TH, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, et al. Polar metals by geometric design. Nature 2016;533:68–72.

[25]

Dong YQ, Ma ZY, Luo ZL, Zhou H, Fong DD, Wu WB, et al. Interfacial octahedral manipulation imparts hysteresis-free metal to insulator transition in ultrathin nickelate heterostructure. Adv Mater Interfac 2019;6:1900644.

[26]

Prasanna R, Gold-Parker A, Leijtens T, Conings B, Babayigit A, Boyen H-G, et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J Am Chem Soc 2017;139:11117–24.

[27]

Peng B, Hu YC, Murakami SC, Zhang TT, Monserrat B. Topological phonons in oxide perovskites controlled by light. Sci Adv 2020;6:eabd1618.

[28]

Yoshida S, Akamatsu H, Hayashi K. Electronic origin of non-zone-center phonon condensations: octahedral rotations as a case study. Phys Rev Lett 2021;127:215701.

[29]

Huband S, Keeble DS, Zhang N, Glazer AM, Bartasyte A, Thomas PA. Relationship between the structure and optical properties of lithium tantalate at the zero-birefringence point. J Appl Phys 2017;121:024102.

[30]

Jones GO, Thomas PA. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr 2002;B58:168–78.

[31]

Min T, Choi W, Seo J, Han G, Song K, Ryu S, et al. Cooperative evolution of polar distortion and nonpolar rotation of oxygen octahedra in oxide heterostructures. Sci Adv 2021;7:eabe9053.

[32]

Fang C, Wang H, Shi SQ. Quantifying structural distortion manipulation for desired perovskite phase: Part Ⅱ. three-step workflow to reveal phase evolution logic. J materiomics 2024;10(2):304–14. https://doi.org/10.1016/j.jmat.2023.06.002.

[33]

Knight KS. Crystallographic parameterisation of distortions in the SOD framework in the sodalite and helvine groups: an analysis in condensed normal modes of an aristotype phase. Mineral Mag 2022;86:87–102.

[34]

Knight KS. Parameterization of the crystal structure of garnet in terms of symmetry-adapted basis-vectors of the ideal tetrahedron and octahedron: application to the pressure-dependence of the crystal structure of Y3Al5O12 between 0 and 126 GPa. Mater Chem Phys 2019;227:72–82.

[35]

Catti M. Short-range order and Li+ ion diffusion mechanisms in Li5La92(TiO3)16 (LLTO). Solid State Ionics 2011;183:1–6.

[36]

Glazer AM. The classification of tilted octahedra in perovskites. Acta Crystallogr 1972;B28:3384–92.

[37]

Glazers AM, Megaw HD. Studies of the lattice parameters and domains in the phase transitions of NaNbO3. Acta Crystallogr 1973;A29:489–95.

[38]

Morita K, Davies DW, Butler KT, Walsh A. Breaking the aristotype: featurisation of polyhedral distortions in perovskite crystals. Chem Mater 2022;34:562–73.

[39]

Howard CJ, Stokes HT. Structures and phase transitions in perovskites – a group-theoretical approach. Acta Crystallogr 2005;A61:93–111.

[40]

Campbell BJ, Stokes HT, Tanner DE, Hatch DM. ISODISPLACE: a web-based tool for exploring structural distortions. J Appl Crystallogr 2006;39:607–14.

[41]

Thomas NW. Phase transitions and (p–T–X) behaviour of centrosymmetric perovskites: modelling with transformed crystallographic data. Acta Crystallogr 2022;B78:40–60.

[42]

Park H, Ali A, Mall R, Bensmail H, Sanvito S, El-Mellouhi F. Data-driven enhancement of cubic phase stability in mixed-cation perovskites. Mach Learn: Sci Technol 2021;2:025030.

[43]

Zhao HJ, Chen P, Prosandeev S, Paillard C, Patel K, Íñiguez J, et al. Energetic couplings in ferroics. Adv. Electron. Mater. 2022;8:2100639.

[44]

Andrews RL, Heyns AM, Woodward PM. Raman studies of A2MWO6 tungstate double perovskites. Dalton Trans 2015;44:10700–7.

[45]

Corà F, Patel A, Harrison NM, Dovesi R, Catlow CRA. An ab initio Hartree–Fock study of the cubic and tetragonal phases of bulk tungsten trioxide. J Am Chem Soc 1996;118:12174–82.

[46]

Chi L, Swainson I, Cranswick L, Her J-H, Stephens P, Knop O. The ordered phase of methylammonium lead chloride CH3ND3PbCl3. J Solid State Chem 2005;178:1376–85.

[47]

Slater PR, Irvine JTS, Ishihara T, Takita Y. The structure of the oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 by powder neutron diffraction. Solid State Ionics 1998;107:319–23.

[48]

Ahtee M, Glazer AM, Hewat AW. High-temperature phases of SrZrO3. Acta Crystallogr 1978;B34:752–8.

[49]

Graetsch HA. Monoclinic AlPO4 tridymite at 473 and 463 K from X-ray powder data. Acta Crystallogr 2002;C58. i18–i20.

[50]

Xia WR, Wu H, Xue PJ, Zhu XH. Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.67Ca0.33MnO3 nanoparticles synthesized via sol-gel process. Nanoscale Res Lett 2018;13:135.

[51]

Zhang JJ, Zhang ZH, Tao XT. Research advances of novel nonlinear optical crystals based on second-order Jahn-Teller effects (SOJT). J. Shandong Univ. 2011;46:99–120.

[52]

Chang HY, Sivakumar T, Ok KM, Halasyamani PS. Polar hexagonal tungsten bronze-type oxides: KNbW2O9, RbNbW2O9, and KTaW2O9. Inorg Chem 2008;47:8511–7.

[53]

Tamazyan R, van Smaalen S. Quantitative description of the tilt of distorted octahedra in ABX3 structures. Acta Crystallogr 2007;B63:190–200.

[54]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169–86.

[55]
Megaw HD. In: Saunders WB, editor. Crystal structures: a working approach; 1973. Philadelphia: London.
[56]

Glazer AM. Simple ways of determining perovskite structures. Acta Crystallogr 1975;A31:756–62.

[57]

Woodward PM. Octahedral tilting in perovskites. Ⅰ. geometrical considerations. Acta Crystallogr 1997;B53:32–43.

[58]

Deblieck R, Tendeloo GV, Landuyt JV, Amelinckx S. A structure classification of symmetry-related perovskite-like ABX4 phases. Acta Crystallogr 1985;B41:319–29.

[59]

Howard CJ, Stokes HT. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr 1998;B54:782–9.

[60]

Woodward DI, Reaney IM. Electron diffraction of tilted perovskites. Acta Crystallogr 2005;B61:387–99.

[61]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8.

[62]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133.

[63]

Hjelm A, Granqvist CG, Wills JM. Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3. Phys Rev B 1996;54:2436–45.

[64]

Zheng HD, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K. Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater 2011;21:2175–96.

[65]

Zhong Q, Dahn JR, Colbow K. Lithium intercalation into WO3 and the phase diagram of LiWO3. Phys Rev B 1992;46:2554–60.

[66]

Wiseman PJ, Dickens PG. Neutron diffraction studies of cubic tungsten bronzes. J Solid State Chem 1976;17:91–100.

[67]

Cava RJ, Santoro A, Murphy DW, Zahurak SM, Roth RS. The structures of the lithium inserted metal oxides Li0.2ReO3 and Li0.36WO3. J Solid State Chem 1983;50:121–8.

[68]

Loopstra BO, Rietveld HM. Further refinement of the structure of WO3. Acta Crystallogr 1969;B25:1420–1.

[69]

Vogt T, Woodward PM, Hunter BA. The high-temperature phases of WO3. J Solid State Chem 1999;144:209–15.

[70]

Fang C, Wang H, Shi SQ. Research progress of electrochromic performances of WO3. Acta Phys Sin 2016;65:168201.

Journal of Materiomics
Pages 293-303
Cite this article:
Fang C, Wang H, Shi S. Quantifying structural distortion manipulation for desired perovskite phase: Part Ⅰ. Paradigm demonstration in tungsten oxides. Journal of Materiomics, 2024, 10(2): 293-303. https://doi.org/10.1016/j.jmat.2023.06.003

127

Views

4

Crossref

3

Web of Science

4

Scopus

Altmetrics

Received: 13 May 2023
Revised: 03 June 2023
Accepted: 05 June 2023
Published: 22 June 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return