AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A novel septenary high-entropy (oxy)hydroxide electrocatalyst for boosted oxygen evolution reaction

Lingjie Zhanga,( )Fangshi FanaXiaomin SongaWeiwei CaiaJie RenaHui YangaNingzhong Baoa,b
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

High-entropy materials (HEMs) have attracted extensive attention in the field of electrochemical catalysis due to their unique properties. However, the preparation of high-entropy catalysts typically relies on high-temperature, energy-intensive, and time-consuming synthesis methods due to their compositional complexity. In this study, a facile low-temperature electrochemical reconstruction approach is adopted to synthesize Ag-decorated septenary Co-Cu-Fe-Mo-Zn-Ag-Ru high-entropy (oxy)hydroxide electrocatalysts for oxygen evolution reaction (OER). By introducing Ag and Ru elements and implanting Ag nanoparticles to co-regulate the electronic structure of the catalysts, the as-prepared catalyst achieves remarkable OER performance with a low overpotential of 298 mV at 100 mA/cm2 and a small Tafel slope of 30.1 mV/dec in 1 mol/L KOH. This work offers a valuable strategy for developing high-performance high-entropy OER electrocatalysts.

References

[1]

Xu H, Zhou X, Lin X, Wu Y, Lin X, Qiu H. Electronic Interaction between in situ formed RuO2 Clusters and a nanoporous Zn3V3O8 Support and its Use in the oxygen evolution reaction. ACS Appl Mater Interf. 2021;13(46):54941–8. https://doi.org/10.1021/acsami.1c15119.

[2]

Wang B, Wang X, Lu L, Zhou C, Xi Z, Wang J, et al. Oxygen-vacancy-activated CO2 Splitting over amorphous oxide semiconductor photocatalyst. ACS Catal 2018;8(1):516–25. https://doi.org/10.1021/acscatal.7b02952.

[3]

Huang J, Sheng H, Ross R, Han J, Wang X, Song B, et al. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat Commun 2021;12(1):3036. https://doi.org/10.1038/s41467-021-23390-8.

[4]

Zhou Y, Sun S, Song J, Xi S, Chen B, Du Y, et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv Mater 2018;30(32):1802912. https://doi.org/10.1002/adma.201802912.

[5]

Zhang Y, Lyu J, Zhao Y, Hu K, Chen Z, Lin X, et al. In situ coupling of Ag nanoparticles with high-entropy oxides as highly stable bifunctional catalysts for wearable Zn-Ag/Zn-air hybrid batteries. Nanoscale 2021;13(38):16164–71. https://doi.org/10.1039/d1nr03539h.

[6]

Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, et al. High-entropy energy materials: challenges and new opportunities. Energy Environ Sci 2021;14(5):2883–905. https://doi.org/10.1039/d1ee00505g.

[7]

Wang T, Chen H, Yang Z, Liang J, Dai S. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J Am Chem Soc 2020;142(10):4550–4. https://doi.org/10.1021/jacs.9b12377.

[8]

Li S, Chen B, Wang Y, Ye M, van Aken P, Cheng C, et al. Oxygen-evolving catalytic atoms on metal carbides. Nat Mater 2021;20(9):1240. https://doi.org/10.1038/s41563-021-01006-2.

[9]

Tang W, Li B, Teng K, Wang X, Liu R, Wu M, et al. Advanced noble-metal-free bifunctional electrocatalysts for metal-air batteries. J Materiomics 2022;8(2):454–74. https://doi.org/10.1016/j.jmat.2021.07.001.

[10]

Jin Z, Lv J, Jia H, Liu W, Li H, Chen Z, et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019;15(47):1904180. https://doi.org/10.1002/smll.201904180.

[11]

Sun H, Tian C, Fan G, Qi J, Liu Z, Yan Z, et al. Boosting Activity on Co4N porous Nanosheet by coupling CeO2 for efficient electrochemical overall water Splitting at high current densities. Adv Funct Mater 2020;30(32):1910596. https://doi.org/10.1002/adfm.201910596.

[12]

Li P, Wang M, Duan X, Zheng L, Cheng X, Zhang Y, et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat Commun 2019;10:1711. https://doi.org/10.1038/s41467-019-09666-0.

[13]

Zhang H, Lv R. Defect engineering of two-dimensional materials for efficient electrocatalysis. J Materiomics 2018;4(2):95–107. https://doi.org/10.1016/j.jmat.2018.02.006.

[14]

Yao R, Zhou Y, Shi H, Wan W, Zhang Q, Gu L, et al. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv Funct Mater 2021;31(10):2009613. https://doi.org/10.1002/adfm.202009613.

[15]

Zhang Y, Wang D, Wang S. High-entropy alloys for electrocatalysis: design, characterization, and applications. Small 2022;18(7):2104339. https://doi.org/10.1002/smll.202104339.

[16]

Zhang L, Cai W, Bao N. Top-level design strategy to construct an advanced high-entropy Co-Cu-Fe-Mo (Oxy)Hydroxide electrocatalyst for the oxygen evolution reaction. Adv Mater 2021;33(22):2100745. https://doi.org/10.1002/adma.202100745.

[17]

Cai Z, Goou H, Ito Y, Tokunaga T, Miyauchi M, Abe H, et al. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem Sci 2021;12(34):11306–15. https://doi.org/10.1039/d1sc01981c.

[18]

Jiang S, Tian K, Li X, Duan C, Wang D, Wang Z, et al. Amorphous High-entropy Non-precious metal oxides with surface reconstruction toward highly efficient and durable catalyst for oxygen evolution reaction. J Colloid Interface Sci 2022;606:635–44. https://doi.org/10.1016/j.jcis.2021.08.060.

[19]

Jin Z, Lyu J, Zhao Y, Li H, Chen Z, Lin X, et al. Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis. Chem Mater 2021;33(5):1771–80. https://doi.org/10.1021/acs.chemmater.0c04695.

[20]

Ding Z, Bian J, Shuang S, Liu X, Hu Y, Sun C, et al. High entropy intermetallic-oxide core-shell nanostructure as superb oxygen evolution reaction catalyst. Adv Sustainable Syst 2020;4(5):1900105. https://doi.org/10.1002/adsu.201900105.

[21]

Tang J, Xu J, Ye Z, Li X, Luo J. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. J Mater Sci Technol 2021;79:171–7. https://doi.org/10.1016/j.jmst.2020.10.079.

[22]

Nguyen T, Liao Y, Lin C, Su Y, Ting J. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv Funct Mater 2021;31(27):2101632. https://doi.org/10.1002/adfm.202101632.

[23]

Lai D, Kang Q, Gao F, Lu Q. High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J Mater Chem 2021;9(33):17913–22. https://doi.org/10.1039/d1ta04755h.

[24]

Cui M, Yang C, Li B, Dong Q, Wu M, Hwang S, et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv Energy Mater 2021;11(3):2002887. https://doi.org/10.1002/aenm.202002887.

[25]

Chen H, Lin W, Zhang Z, Jie K, Mullins DR, Sang X, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: dispersion of catalysts via entropy maximization. ACS Mater Lett 2019;1(1):83–8. https://doi.org/10.1021/acsmaterialslett.9b00064.

[26]

Meng F, Baker I. Nitriding of a high entropy FeNiMnAlCr alloy. J Alloys Compd 2015;645:376–81. https://doi.org/10.1016/j.jallcom.2015.05.021.

[27]

Yan L, Zhang B. Aligned Co3O4-CoOOH heterostructure nanosheet arrays grown on carbon paper with oxygen vacancies for enhanced and robust oxygen evolution. Int J Hydrogen Energy 2021;46(69):34287–97. https://doi.org/10.1016/j.ijhydene.2021.08.002.

[28]

Hu J, Al-Salihy A, Wang J, Li X, Fu Y, Li Z, et al. Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Adv Sci 2021;8(22):2103314. https://doi.org/10.1002/advs.202103314.

[29]

Zhang M, Zhang Y, Ye L, Guo B, Gong Y. Hierarchically constructed Ag nanowires shelled with ultrathin Co-LDH nanosheets for advanced oxygen evolution reaction. Appl Catal B Environ 2021;298:120601. https://doi.org/10.1016/j.apcatb.2021.120601.

[30]

Zhang Z, Li X, Zhong C, Zhao N, Deng Y, Han X, et al. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew Chem Int Ed 2020;59(18):7245–50. https://doi.org/10.1002/anie.202001703.

[31]

Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed 2015;54(25):7399–404. https://doi.org/10.1002/anie.201502226.

[32]

Tian Y, Liu X, Xu L, Yuan D, Dou Y, Qiu J, et al. Engineering crystallinity and oxygen vacancies of Co(Ⅱ) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv Funct Mater 2021;31(20):2101239. https://doi.org/10.1002/adfm.202101239.

[33]

Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, et al. Reduced mesoporous Co3O4 Nanowires as efficient water oxidation Electrocatalysts and supercapacitor electrodes. Adv Energy Mater 2014;4(16):1400696. https://doi.org/10.1002/aenm.201400696.

[34]

Lu X, Yu L, Zhang J, Lou X. Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction. Adv Mater 2019;31(30):1900699. https://doi.org/10.1002/adma.201900699.

[35]

Huang Z, Song J, Du Y, Xi S, Dou S, Nsanzimana J, et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat Energy 2019;4(4):329–38. https://doi.org/10.1038/s41560-019-0355-9.

[36]

Zhang L, Cai W, Bao N, Yang H. Implanting an electron donor to enlarge the d-p hybridization of high-entropy (Oxy)hydroxide: a novel design to boost oxygen evolution. Adv Mater 2022;34(26):2110511. https://doi.org/10.1002/adma.202110511.

[37]

Huang L, Shen S, Zhong Y, Zhang Y, Zhang L, Wang X, et al. Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv Mater 2022;34(6):2107415. https://doi.org/10.1002/adma.202107415.

Journal of Materiomics
Pages 348-354
Cite this article:
Zhang L, Fan F, Song X, et al. A novel septenary high-entropy (oxy)hydroxide electrocatalyst for boosted oxygen evolution reaction. Journal of Materiomics, 2024, 10(2): 348-354. https://doi.org/10.1016/j.jmat.2023.06.006

99

Views

2

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 18 May 2023
Revised: 06 June 2023
Accepted: 09 June 2023
Published: 03 July 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return