AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

MXene: An efficient hemoperfusion sorbent for the removal of uremic toxins

Tianyi WangaWei GuaLu YuaXin GuobJian YangaXiaoyu SunaJun GuancLin ZhoucChengyin WangaHang Yaoa( )Xiuyun Zhangd( )Guoxiu Wangb,( )
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW2007, Australia
Clinical Medical College, Su Bei People's Hospital, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
College of Physical Science and Technology, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

MXene, a family of two-dimensional (2D) transition metal carbides and nitrides have attracted extensive interests for many biochemical applications, including tumour elimination, biosensors, and magnetic resonance imaging (MRI). In this article, we firstly discovered that Ti3C2Tx MXene exhibited a highly efficient adsorption capability as hemoperfusion absorbent towards middle-molecular mass and protein bound uremic toxins in the end stage of renal disease (ESRD) treatment. Molecular scale investigations reveal that the high efficiency of MXene for the removal of uremic toxins could be attributed to synergistic effects of physical/chemical adsorption, electrostatic interaction surface of 2D MXene, and transformation of protein secondary structure. 2D MXene materials could be used as a new hemoperfusion sorbent with ultrahigh efficiency for removing uremic toxins during the treatment of kidney disease.

References

[1]
Centers for Disease Control and Prevention. Chronic kidney disease surveillance system-United States. http://www.cdc.gov/ckd. [Accessed 11 March 2023].
[2]

Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 2004;15:2857–67. https://doi.org/10.1097/01.ASN.0000141960.01035.28.

[3]

Levey AS, Coresh J. Chronic kidney disease. Lancet 2012;379:165–80. https://doi.org/10.1016/S0140-6736(11)60178-5.

[4]

El Nahas AM, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005;365:331–40. https://doi.org/10.1016/S0140-6736(05)17789-7.

[5]

Lin W, Liu T, Yang M. Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 2004;25:1947–57. https://doi.org/10.1016/j.biomaterials.2003.08.027.

[6]

Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 2003;63:1934–43. https://doi.org/10.1046/j.1523-1755.2003.00924.x.

[7]

Winchester JF. Dialysis and hemoperfusion in poisoning. Adv Ren Replace Ther 2002;9:26–30. https://doi.org/10.1053/jarr.2002.30470.

[8]

Ronco C, Reis T, De Rosa S. Coronavirus epidemic and extracorporeal therapies in intensive care: si vis pacem para bellum. Blood Purif 2020;49:255–8. https://doi.org/10.1159/000507039.

[9]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248–53. https://doi.org/10.1002/adma.201102306.

[10]

Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014;516:78–81. https://doi.org/10.1038/nature13970.

[11]

Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 2017;29:1604847. https://doi.org/10.1002/adma.201604847.

[12]

Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016;353:1137–40. https://doi.org/10.1126/science.aag2421.

[13]

Naguib M, Mochalin V, Barsoum M, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26:992–1005. https://doi.org/10.1002/adma.201304138.

[14]

Zhang Q, Teng J, Zou G, Peng Q, Du Q, Jiao T, et al. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016;8:7085–93. https://doi.org/10.1039/C5NR09303A.

[15]

Naguib M, Mashtalir O, Carle J, Presse V r, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS Nano 2012;6:1322–31. https://doi.org/10.1021/nn204153h.

[16]

Wang H, Zou W, Liu C, Sun Y, Xu Y, Sun W, et al. β-ketoenamine-linked covalent organic framework with Co Intercalation: Improved lithium-storage properties and mechanism for high-performance lithium-organic batteries. Batteries & Supercaps 2022;6:e202200434. https://doi.org/10.1002/batt.202200434.

[17]

Chen X, Zhang H, Ci C, Sun W, Wang Y. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries. ACS Nano 2019;13:3600–7. https://doi.org/10.1021/acsnano.9b00165.

[18]

Zhang Y, Wang Y, Guo C, Wang Y. Molybdenum carbide-based photocatalysts: synthesis, functionalization, and applications. Langmiur 2022;38:12739–56. https://doi.org/10.1021/acs.langmuir.2c01887.

[19]

Guo Z, Li Y, Sa B, Fang Y, Lin J, Huang Y, et al. M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Appl Surf Sci 2020;521:146436. https://doi.org/10.1016/j.apsusc.2020.146436.

[20]

Liu N, Ma S, Jiao Z. MXene V2CO2 monolayer:a promising adsorbent to capture toxic NH3 gas. Physica E Low Dimens 2023;148:115651. https://doi.org/10.1016/j.physe.2023.115651.

[21]

Yu S, Tang H, Zhang D, Wang S, Qiu M, Song G, et al. Sci Total Environ 2022;811:152280. https://doi.org/10.1016/j.scitotenv.2021.152280.

[22]

Hwang S, Kang S, Rethinasabapathy M, Roh C, Huh Y. Chem Eng J 2020;397:125428. https://doi.org/10.1016/j.cej.2020.125428.

[23]

Meng F, Seredych M, Chen C, Gura V, Mikhalovsky S, Sandeman S, et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano 2018;12:10518–28. https://doi.org/10.1021/acsnano.8b06494.

[24]

Wang T, Sun X, Guo X, Zhang J, Yang J, Tao S, et al. Ultraefficiently calming cytokine storm using Ti3C2Tx Mxene. Small Methods 2021;5:2001108. https://doi.org/10.1002/smtd.202001108.

[25]

Sun X, Yang J, Su D, Wang C, Wang G. Highly efficient adsorption of bilirubin by Ti3C2Tx Mxene. Chem Asian J 2021;16:1949–55. https://doi.org/10.1002/asia.202100332.

[26]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0.

[27]

Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 1993;48:13115–8. https://doi.org/10.1103/PhysRevB.48.13115.

[28]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1997;78(1396):96. https://doi.org/10.1103/PhysRevLett.78.1396.

[29]

Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953–79. https://doi.org/10.1103/PhysRevB.50.17953.

[30]

Liu X, Gong Q, Zhao M, Bai J, Huang Y, Gan J, et al. Preparation of Na-alginate/CNTs composite spheres by dripping-gelatinization process and their enhanced adsorption of VB12 by freeze-casting. J Porous Mater 2019;26:353–60. https://doi.org/10.1007/s10934-018-0607-2.

[31]

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188–92. https://doi.org/10.1103/PhysRevB.13.5188.

[32]

Oksanen V, Grönhagen-Riska C, Tikanoja S, Somer H, Fyhrquist F. Cerebrospinal fluid lysozyme and beta 2-microglobulin in neurosarcoidosis. J Neurol Sci 1986;73:79–87. https://doi.org/10.1016/0022-510x(86)90066-3.

[33]

Wibell L, Evrin PE, Berggard I. Serum 2-microglobulin in renal disease. Nephron 1973;10:320–31. https://doi.org/10.1159/000180203.

[34]

Sun L, Yan P, Zhang Y, Wei L, Li G. Effect of activated charcoal hemoperfusion on renal function in patients with paraquat poisoning. Exp Ther Med 2018;15:2688–92. https://doi.org/10.3892/etm.2018.5712.

[35]

Barhoum S, Yethiraj A. An NMR study of macromolecular aggregation in a model polymer-surfactant solution. J Phys Chem B 2010;114:17062–7. https://doi.org/10.1063/1.3290985.

[36]

Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 2011;133:2525–34. https://doi.org/10.1021/ja107583h.

[37]

Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011;111:5610–37. https://doi.org/10.1021/cr100440g.

[38]

Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Pro Nati Acad Sci 2007;104:2050–5. https://doi.org/10.1073/pnas.0608582104.

[39]
Horbett TA, Brash JL. ACS symposium series, 602. Washington DC: American Chemical Society; 1995. p. 112–28.
[40]

Klein J. Probing the interactions of proteins and nanoparticles. Pro Nati Acad Sci 2007;104:2029–30. https://doi.org/10.1073/pnas.0611610104.

[41]

Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009;8:543–57. https://doi.org/10.1038/nmat2442.

[42]

Näreoja T, Määttänen A, Peltonen J, Hänninen PE, Härmä H. Impact of surface defects and denaturation of capture surface proteins on nonspecific binding in immunoassays using antibody-coated polystyrene nanoparticle labels. J Immunol Methods 2009;347:24–30. https://doi.org/10.1016/j.jim.2009.05.010.

[43]

Cox M, Barnham KJ, Frenkiel T, Hoeschele JD, Mason A, He Q. Identification of platination sites on human serum transferrin using (13)C and (15)N NMR spectroscopy. J Biol Inorg Chem 1999;4:621–31. https://doi.org/10.1007/s007750050386.

[44]

Bao W, Liu L, Wang C, Choi S, Wang D, Wang G. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv Energy Mater 2018;8:1702485. https://doi.org/10.1002/aenm.201702485.

[45]

Wen Y, Rufford T, Chen X, Li N, Lyu M, Dai L, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 2017;38:368–76. https://doi.org/10.1016/J.NANOEN.2017.06.009.

[46]

Van de Lagemaat E, De Groot L, Van den Heuvel EGHM. Vitamin B12 in Relation to oxidative stress: a systematic review. Nutrients 2019;11:482–97. https://doi.org/10.3390/nu11020482.

[47]

Kerber SJ, Bruckner JJ, Wozniak K, Seal S, Hardcastle S, Barr TL. The nature of hydrogen in X-ray photoelectron spectroscopy: general patterns from hydroxides to hydrogen bonding. J Vac Sci Technol A 1996;14:1314–20. https://doi.org/10.1116/1.579947.

[48]

Gao XT, Xie Y, Zhu XD, Sun KN, Xie XM, Liu YT, et al. Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 2018;14:1802443. https://doi.org/10.1002/smll.201802443.

[49]

Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 2006;1:2876–90. https://doi.org/10.1038/nprot.2006.202.

[50]

Lynch I, Dawson K, Linse S. Detecting cryptic epitopes created by nanoparticles. Sci STKE 2006;2006:pe14. https://doi.org/10.1126/stke.3272006pe14.

[51]

Rittle J, Field M, Green M, Tezcan F. An efficient, step-economical strategy for the design of functional metalloproteins. Nat Chem 2019;11:434–41. https://doi.org/10.1038/s41557-019-0218-9.

[52]

Tanaka F, Forster L, Pal PK, Rupley JA. The circular dichroism of Lysozyme. J Biol Chem 1975;250:6977–82. https://doi.org/10.1016/S0021-9258(19)41028-4.

[53]

Hancock TJ, Hsu J. Simple method for sample temperature calibration in a 500 MHz NMR spectrometer useful for protein studies. Biotechnol Tech 1996;12:494–502. https://doi.org/10.1007/BF00161590.

[54]

Knubovets T, Osterhout JJ, Klibanov AM. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies. Biotechnol Bioeng 1999;63:242–8. https://doi.org/10.1002/(SICI)1097-0290(19990420)63:2%3C242::AID-BIT13%3E3.0.CO;2-N.

[55]

Cruz-Angeles J, Martínez L, Videa M. Application of ATR-FTIR spectroscopy to the study of thermally induced changes in secondary structure of protein molecules in solid state. Biopolymers 2015;103:574–84. https://doi.org/10.1002/bip.22664.

[56]

Ueda T, Isakari Y, Aoki H, Yasukochi T, Masutomo S, Kawano K, et al. 1H-NMR Study of the intramolecular interaction of a substrate analogue covalently attached to aspartic acid-101 in lysozyme. J Biochem 1991;109:690–8. https://doi.org/10.1093/oxfordjournals.jbchem.a123442.

[57]

McDonald C, Phillips W, Glickson J. Nuclear magnetic resonance study of the mechanism of reversible denaturation of lysozyme. J Am Chem Soc 1971;93:235–46. https://doi.org/10.1021/ja00730a039.

[58]

Hancock TJ, Hsu J. Simple method for sample temperature calibration in a 500 MHz NMR spectrometer useful for protein studies. Biotechnol Tech 1994;8:199–202. https://doi.org/10.1007/BF00161590.

[59]

Sim ES, Yi GS, Je M, Lee Y, Chung YC. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Lisingle bondS batteries: a density functional theory study. J Power Sources 2017;342:64–9. https://doi.org/10.1016/j.jpowsour.2016.12.042.

[60]
Patterson SD, Waldron M, Jeffries O. Chapter 13 - proteins and amino acids and physical exercise. In: Walrand S, editor. Nutrition and skeletal muscle. Elsevier B.V, Academic Press; 2019. p. 183–96. https://doi.org/10.1016/C2016-0-00256-5.
[61]

Liu H, Moynihan KD, Zheng Y, Szeto G, Li A, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014;507:519–22. https://doi.org/10.1038/nature12978.

[62]

Sirac C, Herrera G, Sanders P, Batuman V, Bender S, Ayala M, et al. Animal models of monoclonal immunoglobulin-related renal diseases. Nat Rev Nephrol 2018;14:246–64. https://doi.org/10.1038/nrneph.2018.8.

[63]

Karnam A, Rambabu N, Das M, Bou-Jaoudeh M, Delignat S, Käsermann F, et al. Therapeutic normal IgG intravenous immunoglobulin activates Wnt-β-catenin pathway in dendritic cells. Commun Biol 2020;3:96–118. https://doi.org/10.1038/s42003-020-0825-4.

Journal of Materiomics
Pages 1129-1140
Cite this article:
Wang T, Gu W, Yu L, et al. MXene: An efficient hemoperfusion sorbent for the removal of uremic toxins. Journal of Materiomics, 2023, 9(6): 1129-1140. https://doi.org/10.1016/j.jmat.2023.06.010

153

Views

4

Crossref

4

Web of Science

4

Scopus

Altmetrics

Received: 24 March 2023
Revised: 08 June 2023
Accepted: 18 June 2023
Published: 07 July 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return