AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Suppression of intervalley scattering and enhanced phonon anharmonic interactions in 2D Bi2TeSe2: Crystal-field symmetry and band convergence

Lei PengaAo WuaYujie XiaaHaotian ZhangaYuting YangaHezhu ShaobYing ChencJuan ZhangaLe ShuaHeyuan ZhuaYuxiang Zhenga,d( )Hao Zhanga,d( )
School of Information Science and Technology, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433, China
Yiwu Research Institute of Fudan University, Yiwu 322000, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The electron-phonon (el-ph) and phonon-phonon interactions play a key role in determining electronic and thermal transport properties, respectively, in promising two-dimensional (2D) semiconductor devices. In this study, we investigated el-ph interactions using Wannier-Fourier interpolation method and renormalized phonon scattering considering finite-temperature effects in Bi2TeSe2 monolayer. The results show that the optical phonon modes dominate the carrier scattering, where level repulsion induced by crystal field splitting and spin-orbit coupling (SOC) effect effectively suppresses intervalley scattering, leading to high hole mobility. Moreover, the strong anharmonicity in Bi2TeSe2 monolayer results in the temperature-dependent softening of its optical phonons, along with a corresponding variation in interatomic force constants (IFCs). As a result, the lattice thermal conductivity is remarkably low and exhibits weak temperature dependence. Finally, the predicted dimensionless thermoelectric figure of merit exceeds unity in the range of 200–800 K, indicating the potential of Bi2TeSe2 monolayer for thermoelectric applications. This work provides new insights into the elimination of intervalley scattering by crystal field splitting and SOC effects, and paves the way for the evaluation of thermoelectric properties of materials with complex scattering mechanisms and strong anharmonicity.

References

[1]

Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, et al. Electronics based on two-dimensional materials. Nat Nanotechnol 2014;9(10):768–79.

[2]

Liu Y, Duan X, Shin H-J, Park S, Huang Y, Duan X. Promises and prospects of two-dimensional transistors. Nature 2021;591(7848):43–53.

[3]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005;438(7065):197–200.

[4]

Xi J, Zhu Z, Xi L, Yang J. Perspective of the electron–phonon interaction on the electrical transport in thermoelectric/electronic materials. Appl Phys Lett 2022;120(19):190503.

[5]

Mir SH, Yadav VK, Singh JK. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS Omega 2020;5(24):14203–11.

[6]

Giustino F, Cohen ML, Louie SG. Electron-phonon interaction using Wannier functions. Phys Rev B 2007;76(16):165108.

[7]

Nakamura Y, Zhao T, Xi J, Shi W, Wang D, Shuai Z. Intrinsic charge transport in stanene: roles of bucklings and electron–phonon couplings. Advanced Electronic Materials 2017;3(11):1700143.

[8]

Xi J, Wang D, Yi Y, Shuai Z. Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. J Chem Phys 2014;141(3):034704.

[9]

Ding J, Liu C, Xi L, Xi J, Yang J. Thermoelectric transport properties in chalcogenides ZnX (X= S, Se): from the role of electron-phonon couplings. J Materiom 2021;7(2):310–9.

[10]

Liu C, Yang J, Xi J, Ke X. The origin of intrinsic charge transport for Dirac carbon sheet materials: roles of acetylenic linkage and electron–phonon couplings. Nanoscale 2019;11(22):10828–37.

[11]

Wu Y, Hou B, Chen Y, Cao J, Shao H, Zhang Y, et al. Strong electron–phonon coupling influences carrier transport and thermoelectric performances in group-Ⅳ/Ⅴ elemental monolayers. npj Comput Mater 2021;7(1):145.

[12]

Wu Y, Hou B, Ma C, Cao J, Chen Y, Lu Z, et al. Thermoelectric performance of 2D materials: the band-convergence strategy and strong intervalley scatterings. Mater Horiz 2021;8(4):1253–63.

[13]

Chen Y, Wu Y, Hou B, Cao J, Shao H, Zhang Y, et al. Renormalized thermoelectric figure of merit in a band-convergent Sb2Te2Se monolayer: full electron–phonon interactions and selection rules. J Mater Chem 2021;9(29):16108–18.

[14]

Park J, Dylla M, Xia Y, Wood M, Snyder GJ, Jain A. When band convergence is not beneficial for thermoelectrics. Nat Commun 2021;12(1):3425.

[15]

Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7(2):105–14.

[16]

Hellman O, Broido DA. Phonon thermal transport in Bi2Te3 from first principles. Phys Rev B 2014;90(13):134309.

[17]

Zhao A, Zhang L, Guo Y, Li H, Ruan S, Zeng Y-J. Emerging members of two-dimensional materials: bismuth-based ternary compounds. 2D Mater 2020;8(1):012004.

[18]

Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett 2017;17(5):3021–6.

[19]

Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol 2017;12(6):530–4.

[20]

Chen C, Wang M, Wu J, Fu H, Yang H, Tian Z, et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci Adv 2018;4(9):eaat8355.

[21]

Wang B, Niu X, Ouyang Y, Zhou Q, Wang J. Ultrathin semiconducting Bi2Te2S and Bi2Te2Se with high electron mobilities. J Phys Chem Lett 2018;9(3):487–90.

[22]

Hung NT, Nugraha AR, Saito R. Designing high-performance thermoelectrics in two-dimensional tetradymites. Nano Energy 2019;58:743–9.

[23]

Rashid Z, Nissimagoudar AS, Li W. Phonon transport and thermoelectric properties of semiconducting Bi2Te2X (X= S, Se, Te) monolayers. Phys Chem Chem Phys 2019;21(10):5679–88.

[24]

Lu Z, Wu Y, Xu Y, Ma C, Chen Y, Xu K, et al. Ultrahigh electron mobility induced by strain engineering in direct semiconductor monolayer Bi2TeSe2. Nanoscale 2019;11(43):20620–9.

[25]

Liu Y, Xu Y, Ji Y, Zhang H. Monolayer Bi2Se3–xTex: novel two-dimensional semiconductors with excellent stability and high electron mobility. Phys Chem Chem Phys 2020;22(17):9685–92.

[26]

Wang N, Shen C, Sun Z, Xiao H, Zhang H, Yin Z, et al. High-temperature thermoelectric monolayer Bi2TeSe2 with high power factor and ultralow thermal conductivity. ACS Appl Energy Mater 2022;5(2):2564–72.

[27]

Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50(24):17953.

[28]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54(16):11169.

[29]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77(18):3865.

[30]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010;132(15):154104.

[31]

Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 2009;21(39):395502.

[32]

Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001;73(2):515.

[33]

Mostofi AA, Yates JR, Pizzi G, Lee Y-S, Souza I, Vanderbilt D, et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun 2014;185(8):2309–10.

[34]

Noffsinger J, Giustino F, Malone BD, Park C-H, Louie SG, Cohen ML. EPW: a program for calculating the electron–phonon coupling using maximally localized Wannier functions. Comput Phys Commun 2010;181(12):2140–8.

[35]

Poncé S, Margine ER, Verdi C, Giustino F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput Phys Commun 2016;209:116–33.

[36]

Madsen GK, Carrete J, Verstraete MJ. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput Phys Commun 2018;231:140–5.

[37]

Madsen GK, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 2006;175(1):67–71.

[38]

Yang J, Li H, Wu T, Zhang W, Chen L, Yang J. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv Funct Mater 2008;18(19):2880–8.

[39]

Jonson M, Mahan G. Mott's formula for the thermopower and the Wiedemann-Franz law. Phys Rev B 1980;21(10):4223.

[40]

Peng B, Ning Z, Zhang H, Shao H, Xu Y, Ni G, et al. Beyond perturbation: role of vacancy-induced localized phonon states in thermal transport of monolayer MoS2. J Phys Chem C 2016;120(51):29324–31.

[41]

Peng B, Mei H, Zhang H, Shao H, Xu K, Ni G, et al. High thermoelectric efficiency in monolayer PbI2 from 300 K to 900 K. Inorg Chem Front 2019;6(4):920–8.

[42]

Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater 2015;108:1–5.

[43]

Li W, Carrete J, Katcho NA, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun 2014;185(6):1747–58.

[44]

Esfarjani K, Stokes HT. Method to extract anharmonic force constants from first principles calculations. Phys Rev B 2008;77(14):144112.

[45]

Hellman O, Abrikosov I, Simak S. Lattice dynamics of anharmonic solids from first principles. Phys Rev B 2011;84(18):180301.

[46]

Hellman O, Steneteg P, Abrikosov IA, Simak SI. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys Rev B 2013;87(10):104111.

[47]

Hellman O, Abrikosov IA. Temperature-dependent effective third-order interatomic force constants from first principles. Phys Rev B 2013;88(14):144301.

[48]

Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 2009;5(6):438–42.

[49]

Carrete J, Li W, Lindsay L, Broido DA, Gallego LJ, Mingo N. Physically founded phonon dispersions of few-layer materials and the case of borophene. Materials Research Letters 2016;4(4):204–11.

[50]

Molina-Sanchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2. Phys Rev B 2011;84(15):155413.

[51]

Wang Y, Huang P, Ye M, Quhe R, Pan Y, Zhang H, et al. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem Mater 2017;29(5):2191–201.

[52]

Malard LM, Guimarães MH, Mafra DL, Jorio A. Group-theory analysis of electrons and phonons in N-layer graphene systems. Phys Rev B 2009;79(12):125426.

[53]

Anderson OL. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solid 1963;24(7):909–17.

[54]

Zhu Y, Xia Y, Wang Y, Sheng Y, Yang J, Fu C, et al. Violation of the T−1 relationship in the lattice thermal conductivity of Mg3Sb2 with locally asymmetric vibrations. Research 2020;2020:4589786.

[55]
Morelli DT, Slack GA. High lattice thermal conductivity solids. High thermal conductivity materials. 2006. p. 37–68.
[56]

Xu B, Feng T, Agne MT, Zhou L, Ruan X, Snyder GJ, et al. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew Chem Int Ed 2017;56(13):3546–51.

[57]

Soni A, Yanyuan Z, Ligen Y, Aik MKK, Dresselhaus MS, Xiong Q. Enhanced thermoelectric properties of solution grown Bi2TeSe nanoplatelet composites. Nano Lett 2012;12(3):1203–9.

[58]

Hu L, Wu H, Zhu T, Fu C, He J, Ying P, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type Bismuth-Telluride-based solid solutions. Adv Energy Mater 2015;5(17):1500411.

[59]

Hong M, Chasapis TC, Chen Z-G, Yang L, Kanatzidis MG, Snyder GJ, et al. n-type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 2016;10(4):4719–27.

[60]

Sun P, Wei B, Zhang J, Tomczak JM, Strydom A, Søndergaard M, et al. Large Seebeck effect by charge-mobility engineering. Nat Commun 2015;6(1):7475.

[61]

Hu L, Zhu T, Liu X, Zhao X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater 2014;24(33):5211–8.

[62]

Pan Y, Li J-F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater 2016;8(6):e275–.

[63]

Zhu B, Huang Z-Y, Wang X-Y, Yu Y, Yang L, Gao N, et al. Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te2.4Se0.6 via its liquid state treatment. Nano Energy 2017;42:8–16.

[64]

Liu X, Xing T, Qiu P, Deng T, Li P, Li X, et al. Suppressing the donor-like effect via fast extrusion engineering for high thermoelectric performance of polycrystalline Bi2Te2.79Se0.21. J Materiom 2023;9(2):345–52.

Journal of Materiomics
Pages 386-395
Cite this article:
Peng L, Wu A, Xia Y, et al. Suppression of intervalley scattering and enhanced phonon anharmonic interactions in 2D Bi2TeSe2: Crystal-field symmetry and band convergence. Journal of Materiomics, 2024, 10(2): 386-395. https://doi.org/10.1016/j.jmat.2023.06.011

178

Views

4

Crossref

4

Web of Science

4

Scopus

Altmetrics

Received: 03 May 2023
Revised: 10 June 2023
Accepted: 19 June 2023
Published: 18 July 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return