AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhanced piezoelectric properties and electrical resistivity in CaHfO3 modified BiFeO3–BaTiO3 lead-free piezoceramics

Jianwei Zhaoa,( )Hailan Qina,bXiaoxin Chena,bShuhui YuaDawei Wangc( )
Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, Heilongjiang, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

A number of CaHfO3 modified BiFeO3-0.33BaTiO3 (BF-0.33BT-xCH) lead-free piezoceramics were fabricated through the solid-state sintering method and comprehensively investigated in this work. Under the optimal sintering temperature, all compositions display a typical perovskite structure in a pseudo-cubic phase with slightly larger lattice parameters as the CH content increases. The electrical resistivity is highly enhanced due to the addition of CH. Microstructures, including the grain morphology, core-shell structure, and chemistry inhomogeneities, are demonstrated upon different BF-0.33BT-xCH compositions. In particular, the core-shell structures with non-uniform element distributions in the compositions can be eliminated by adding sufficient CH content (x > 0.05). The highest saturation polarization (40.1 μC/cm2), remnant polarization (26.8 μC/cm2), and converse piezoelectric coefficient (290 pm/V) are achieved in the BF-0.33BT-0.01CH piezoceramic, which are significantly enhanced in comparison with the undoped BF-0.33BT piezoceramic. With further increasing the CH content, the piezoelectric properties of BF-0.33BT-xCH ceramics decline rapidly, and they start to exhibit characteristics of relaxor ferroelectrics.

References

[1]

Cross LE. Ferroelectric materials for electromechanical transducer applications. Mater Chem Phys 1996;43:108–15. https://doi.org/10.1016/0254-0584(95)01617-4.

[2]

Dagdeviren C, Joe P, Tuzman OL, Park KI, Lee KJ, Shi Y, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mechanics Letters 2016;9:269–81. https://doi.org/10.1016/J.EML.2016.05.015.

[3]

Bowen CR, Kim HA, Weaver PM, Dunn S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 2014;7(1):25-44. https://doi.org/10.1039/C3EE42454E.

[4]

Liu H, Zhong J, Lee C, Lee SW, Lin L. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl Phys Rev 2018;5(4). https://doi.org/10.1063/1.5074184.

[5]

Muralt P. PZT thin films for microsensors and actuators: where do we stand? IEEE Trans Ultrason Ferroelectrics Freq Control 2000;47(4):903–15. https://doi.org/10.1109/58.852073.

[6]

Gebhardt S, Seffner L, Schlenkrich F, Schönecker A. PZT thick films for sensor and actuator applications. J Eur Ceram Soc 2007;27(13–15):4177–80. https://doi.org/10.1016/j.jeurceramsoc.2007.02.122.

[7]

Trolier-Mckinstry S, Muralt P. Thin film piezoelectrics for MEMS. J Electroceram 2004;12:7–17. https://doi.org/10.1023/B:JECR.0000033998.72845.51.

[8]
EU-directive 2002/95/EC: restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Off J Eur Union 2003;46:19.
[9]
EU-directive 2002/96/EC: waste electrical and electronic equipment (WEEE). Off J Eur Union 2003;46:24.
[10]

Rödel J, Li J-F. Lead-free piezoceramics: status and perspectives. MRS Bull 2018;43:576–80. https://doi.org/10.1557/mrs.2018.181.

[11]

Panda PK. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 2009;44:5049–62. https://doi.org/10.1007/s10853-009-3643-0.

[12]

Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Nature 2004;432:84–7. https://doi.org/10.1038/nature03028.

[13]

Xu K, Li J, Lv X, Wu J, Zhang X, Xiao D, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 2016;28(38):8519–23. https://doi.org/10.1002/adma.201601859.

[14]

Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115(7):2559–95. https://doi.org/10.1021/cr5006809.

[15]

Aksel E, Jones JL. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 2010;10(3):1935–54. https://doi.org/10.3390/s100301935.

[16]

Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 2009;103(25):257602. https://doi.org/10.1103/PhysRevLett.103.257602.

[17]

Lee MH, Kim DJ, Park JS, Kim SW, Song TK, Kim MH, et al. High-performance lead-free piezoceramics with high Curie temperatures. Adv Mater 2015;27(43):6976–82. https://doi.org/10.1002/adma.201502424.

[18]

Leontsev SO, Eitel RE. Origin and magnitude of the large piezoelectric response in the lead-free (1-x)BiFeO3-xBaTiO3 solid solution. J Mater Res 2011;26(1):9–17. https://doi.org/10.1557/jmr.2010.44.

[19]

Wang D, Wang G, Murakami S, Fan Z, Feteira A, Zhou D, et al. BiFeO3-BaTiO3: a new generation of lead-free electroceramics. J Adv Dielectrics 2018;8(6):1–35. https://doi.org/10.1142/S2010135X18300049.

[20]

Wang G, Hu T, Zhu W, Lu Z, Kleppe A, Lopez MD, et al. Multiple local symmetries result in a common average polar axis in high-strain BiFeO3-based ceramics. Phys Rev Lett 2023;130(7):076801. https://doi.org/10.1103/physrevlett.130.076801.

[21]

Wang G, Fan Z, Murakami S, Lu Z, Hall DA, Sinclair DC, et al. Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics. J Mater Chem 2019;7(37):21254–63. https://doi.org/10.1039/c9ta07904a.

[22]

Wang D, Khesro A, Murakami S, Feteira A, Zhao Q, Reaney IM. Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J Eur Ceram Soc 2017;37(4):1857–60. https://doi.org/10.1016/j.jeurceramsoc.2016.10.027.

[23]

Habib M, Zhou X, Tang L, Xue G, Akram F, Alzaid M, et al. Phase and domain engineering strategy for enhancement of piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics. J. Materiomics 2023;9(5):920–9. https://doi.org/10.1016/J.JMAT.2023.02.015.

[24]

Tang YC, Yin Y, Song AZ, Li HZ, Zhang BP. High-performance BiFeO3-BaTiO3 lead-free piezoceramics insensitive to off-stoichiometry and processing temperature. J. Materiomics 2023;9(2):353–61. https://doi.org/10.1016/J.JMAT.2022.09.016.

[25]

Leontsev SO, Eitel RE. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J Am Ceram Soc 2009;92(12):2957–61. https://doi.org/10.1111/j.1551-2916.2009.03313.x.

[26]

Xun B, Song A, Yu J, Yin Y, Li JF, Zhang BP. Lead-free BiFeO3-BaTiO3 ceramics with high Curie temperature: fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients. ACS Appl Mater Interfaces 2021;13(3):4192–202. https://doi.org/10.1021/acsami.0c20381.

[27]

Cheng S, Zhang BP, Zhao L, Wang KK. Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3-Bi0.5Na0.5TiO3 ceramics with high Curie temperature. J Am Ceram Soc 2019;102(12):7355–65. https://doi.org/10.1111/jace.16602.

[28]

Malik RA, Hussain A, Song TK, Kim WJ, Ahmed R, Sung YS, et al. Enhanced electromechanical properties of (1-x)BiFeO3-BaTiO3-xLiNbO3 ceramics by quenching process. Ceram Int 2017;43:S198–S203. https://doi.org/10.1016/J.CERAMINT.2017.05.298.

[29]

Zeng F, Zhang J, Zhou C, Jiang L, Guo H, Chen Y, et al. Enhanced electric field-induced strain properties in lead-free BF-BT-based piezoceramics by local structure inhomogeneity. ACS Sustainable Chem Eng 2022;10(3):1277–86. https://doi.org/10.1021/acssuschemeng.1c07359.

[30]

Chen Y, Jian J, Chen J, Cheng J. High-temperature BiFeO3–PbTiO3-Ba(Zr,Ti)O3 ternary ceramics with excellent piezoelectricity. J Am Ceram Soc 2021;104(9):4687–94. https://doi.org/10.1111/JACE.17904.

[31]

Yu Z, Zeng J, Zheng L, Liu W, Li G, Kassiba A. Large piezoelectricity and high Curie temperature in novel bismuth ferrite-based ferroelectric ceramics. J Am Ceram Soc 2020;103(11):6435–44. https://doi.org/10.1111/jace.17382.

[32]

Habib M, Lee MH, Kim DJ, Choi HI, Kim MH, Kim WJ, et al. Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3–BaTiO3 ceramics. Ceram Int 2020;46(14):22239–52. https://doi.org/10.1016/j.ceramint.2020.05.301.

[33]

Murakami S, Wang D, Mostaed A, Khesro A, Feteira A, Sinclair DC, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J Am Ceram Soc 2018;101(12):5428–42. https://doi.org/10.1111/JACE.15749.

[34]

Wang D, Fan Z, Li W, Zhou D, Feteira A, Wang G, et al. High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics. ACS Appl Energy Mater 2018;1(8):4403–12. https://doi.org/10.1021/ACSAEM.8B01099.

[35]

Cheng S, Zhang B, Ai S, Yu H, Wang X, Yang J, et al. Enhanced piezoelectric properties and thermal stability of Bi0.5Na0.5TiO3 modified BiFeO3-BaTiO3 ceramics with morphotropic phase boundary. J. Materiomics 2023;9(3):464–71. https://doi.org/10.1016/J.JMAT.2023.01.001.

[36]

Shibuya K, Ohnishi T, Lippmaa M, Kawasaki M, Koinuma H. Domain structure of epitaxial CaHfO3 gate insulator films on SrTiO3. Appl Phys Lett 2004;84(12):2142–4. https://doi.org/10.1063/1.1689394.

[37]

Rauwel E, Galeckas A, Rauwel P, Fjellvåg H. Unusual photoluminescence of CaHfO3 and SrHfO3 nanoparticles. Adv Funct Mater 2012;22(6):1174–9. https://doi.org/10.1002/ADFM.201101013.

[38]

Jang S, Kim H, Wi SW, Lim H, Chung JS, Nah Y, et al. Structural and luminescent properties of Eu-ion-doped CaHfO3. J Lumin 2020;226:117490. https://doi.org/10.1016/J.JLUMIN.2020.117490.

[39]

Yin Y, Yu JR, Tang YC, Song AZ, Liu H, Yang D, et al. Enhanced energy storage properties and antiferroelectric stability of Mn-doped NaNbO3-CaHfO3 lead-free ceramics: regulating phase structure and tolerance factor. J. Materiomics 2022;8(3):611–7. https://doi.org/10.1016/J.JMAT.2021.11.013.

[40]

Shay DP, Podraza NJ, Donnelly NJ, Randall CA. High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J Am Ceram Soc 2012;95(4):1348–55. https://doi.org/10.1111/J.1551-2916.2011.04962.X.

[41]

Luo C, Wei Y, Feng Q, Wang M, Luo N, Yuan C, et al. Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application. Chem Eng J 2022;429:132165. https://doi.org/10.1016/J.CEJ.2021.132165.

[42]

Zhou C, Liu W, Xue D, Ren X, Bao H, Gao J, et al. Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material-Ba(Ti0.8Hf0.2)O3-(Ba0.7Ca0.3)TiO3. Appl Phys Lett 2012;100(22). https://doi.org/10.1063/1.4724216.

[43]

Yang Y, Zhou Y, Ren J, Zheng Q, Lam KH, Lin D. Coexistence of three ferroelectric phases and enhanced piezoelectric properties in BaTiO3–CaHfO3 lead-free ceramics. J Eur Ceram Soc 2018;38(2):557–66. https://doi.org/10.1016/j.jeurceramsoc.2017.09.023.

[44]

Kim C, Pilania G, Ramprasad R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J Phys Chem C 2016;120(27):14575–80. https://doi.org/10.1021/ACS.JPCC.6B05068.

[45]

Calisir I, Hall DA. Chemical heterogeneity and approaches to its control in BiFeO3–BaTiO3 lead-free ferroelectrics. J Mater Chem C 2017;6(1):134–46. https://doi.org/10.1039/C7TC04122E.

[46]
Esteves G, Ramos K, Fancher C, Jones J. LIPRAS: line-profile analysis software. 2017. https://doi.org/10.13140/RG.2.2.29970.25282/3.
[47]

Baloch AAB, Alqahtani SM, Mumtaz F, Muqaibel AH, Rashkeev SN, Alharbi FH. Extending Shannon's ionic radii database using machine learning. Phys. Rev. Mat. 2021;5(4):043804. https://doi.org/10.1103/physrevmaterials.5.043804.

[48]

Wang G, Li J, Zhang X, Fan Z, Yang F, Feteira A, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ Sci 2019;12(2):582–8. https://doi.org/10.1039/c8ee03287d.

Journal of Materiomics
Pages 416-422
Cite this article:
Zhao J, Qin H, Chen X, et al. Enhanced piezoelectric properties and electrical resistivity in CaHfO3 modified BiFeO3–BaTiO3 lead-free piezoceramics. Journal of Materiomics, 2024, 10(2): 416-422. https://doi.org/10.1016/j.jmat.2023.07.001

118

Views

6

Crossref

6

Web of Science

5

Scopus

Altmetrics

Received: 27 April 2023
Revised: 03 July 2023
Accepted: 03 July 2023
Published: 24 July 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return