AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High pressure phase boundaries of AgNbO3

Kai DaiaAnyang Cuia,b,c( )Yafang LiaZhen LiudYuting YanaKai JiangaJinzhong ZhangaLiyan ShangaLiangqing ZhuaYawei LiaGenshui WangdZhigao Hua,e( )
Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, Shanghai, 200234, China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
Show Author Information

Graphical Abstract

Abstract

The external pressure is one of the essential parameters for regulating the structure and energy conversion properties of antiferroelectric AgNbO3. For pure AgNbO3, however, there has been still a blank of its real lattice structure under the stress field. Here, high-pressure lattice structures and phase transitions of AgNbO3 have been explored by spectroscopic experiments and theoretical models. A successive phase transition process from Pbcm to C2221 to P21 has been observed at the pressure range of 0–30 GPa, associated with displacive-type characterized by soft-mode kinetics. Note that the paraelectric phase cannot be achieved under high-pressure at room temperature. Significantly, the competition of long-range Coulomb force, short-range interatomic interaction, and covalent interaction in AgNbO3 lattice were demonstrated under the stress field. The present work can provide fundamental guidelines to reveal the high-pressure phase transitions of AgNbO3, which will open up possibilities for the designing device with functional properties at extremes.

References

[1]

Kittel C. Theory of antiferroelectric crystals. Phys Rev 1951;82:729.

[2]

Cross LE. Antiferroelectric-ferroelectric switching in a simple “Kittel” antiferroelectric. J Phys Soc Jpn 1967;23:77.

[3]

Ko DL, Ti H, Lai YH, Ho SZ, Zheng YZ, Huang R, Pan H, Chen YC, Chu YH. High-stability transparent flexible energy storage based on PbZrO3 muscovite heterostructure. Nano Energy 2021;87:106149.

[4]

Aryana K, Tomko JA, Gao R, Hoglund ER, Mimura T, Makarem S, Salanova A, Bin MH, Pfeifer TW, Olson DH. Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3). Nat Commun 2022;13:1573.

[5]

Qiao LL, Song C, Wang Q, Zhou YJ, Pan F. Polarization evolution in nanometer-thick PbZrO3 films: implications for energy storage and pyroelectric sensors. ACS Appl Nano Mater 2022;5:6083.

[6]

Acharya M, Banyas E, Ramesh M, Jiang YZ, Fernandez A, Dasgupta A, Ling HD, Hanrahan B, Persson K, Neaton JB. Exploring the PbSrHfO3 system and potential for high capacitive energy storage density and efficiency. Adv Mater 2022;34:2105967.

[7]

Huang XX, Zhang TF, Wang W, Ge PZ, Tang XG. Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films. Mater Des 2021;204:109666.

[8]

Liu Z, Lu T, Xue F, Nie HC, Withers R, Studer A, Kremer F, Narayanan N, Dong XL, Yu DH, Chen LQ, Liu Y, Wang GS. Lead-free (Ag,K)NbO3 materials for high-performance explosive energy conversion. Sci Adv 2020;6:eaba0367.

[9]

Lu ZL, Bao WC, Wang G, Sun SK, Li LH, Li JL, Yang HJ, Ji HF, Feteira A, Li DJ, Xu FF, Kleppe AK, Wang DW, Liu SY, Reaney IM. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy 2021;79:105423.

[10]

Luo NN, Han K, Cabra MJ, Liao XZ, Zhang SJ, Liao CZ, Zhang GZ, Chen XY, Feng Q, Li JF, Wei YZ. Constructing phase boundary in AgNbO3 antiferroelectrics:pathway simultaneously achieving high energy density and efficiency. Nat Commun 2020;11:4824.

[11]

Sciau P, Kania A, Dkhil B, Suard E, Ratuszna A. Structural investigation of AgNbO3 phases using x-ray and neutron diffraction. J Phys Condens Matter 2004;16:2795.

[12]

Samara GA, Sakudo T, Yoshimitsu K. Important generalization concerning the role of competing forces in displacive phase transitions. Phys Rev Lett 1975;35:1767.

[13]

Ahart M, Somayazulu M, Cohen RE, Ganesh P, Dera P, Mao H, Hemley RJ, Ren Y, Liermann P, Wu Z. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008;451:545.

[14]

Datchi F, Dewaele A, Loubeyre P, Letoullec R, Godec YL, Canny B. Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell. High Pres Res 2007;27:447.

[15]

Shen GY, Wang YB, Dewaele A, Wu C, Fratanduono DE, Eggert J, Klotz S, Dziubek KF, Loubeyre P, Fatyanov OV, Asimow PD, Mashimo T, Wentzcovitch RMM. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Pres Res 2020;40:229.

[16]

Buixaderas E, Gregora I, Hlinka J, Dec J, Lukasiewicz T. Raman and IR phonons in ferroelectric Sr0.35Ba0.69Nb2O6.04 single crystals. Phase Transitions 2013;86:217.

[17]

Levin I, Krayzman V, Woicik JC, Karapetrova J, Proffen T, Tucker MG, Reaney IM. Structural changes underlying the diffuse dielectric response in AgNbO3. Phys Rev B 2009;79:104113.

[18]

Petzelt J, Kamba S, Buixaderas E, Bovtun V, Zikmund Z, Kania A, Koukal V, Polivka J, Pashkov V, Komandin G, Volkov A. Infrared and microwave dielectric response of the disordered antiferroelectric Ag(Ta,Nb)O3 system. Ferroelectrics 1999;223:235.

[19]

Shiratori Y, Magrez A, Fischer W, Pithan C, Waser R. Temperature-induced phase transitions in micro-, submicro-, and nanocrystalline NaNbO3. J Phys Chem C 2007;111:18493.

[20]

Rousseau DL, Bauman RP, Porto SPS. Normal mode determination in crystals. J Raman Spectrosc 1981;10:253.

[21]

Cui AY, Ye Y, Zheng LM, Jiang K, Zhu LQ, Shang LY, Li YW, Hu ZG, Chu JH. Exploring lattice symmetry evolution with discontinuous phase transition by Raman scattering criteria: the single-crystalline (K, Na)NbO3 model system. Phys Rev B 2019;100:024102.

[22]

Ye Y, Cui AY, Bian MY, Jiang K, Zhu LQ, Zhang JZ, Shang LY, Li YW, Hu ZG, Chu JH. Temperature and pressure manipulation of magnetic ordering and phonon dynamics with phase transition in multiferroic GdFeO3: evidence from Raman scattering. Phys Rev B 2020;102:024103.

[23]

Dai K, Cui AY, Ye Y, Jiang K, Zhang JZ, Li YW, Wang GS, Dong XL, Hu ZG, Chu JH. Phase diagram with an antiferroelectric/ferroelectric phase boundary in AgNbO3-LiTaO3 energy-storage ceramics by lattice dynamics and electronic transitions. Phys Rev B 2021;104:174104.

[24]

Wang YC, Ma YM. Perspective: crystal structure prediction at high pressures. J Chem Phys 2014;140:040901.

[25]

Wang YC, Xu ML, Yang LX, Yan BM, Qin Q, Shao XC, Zhang YW, Huang DJ, Lin XH, Lv J, Zhang DZ, Gou HY, Mao H, Chen CF, Ma YM. Pressure-stabilized divalent ozonide CaO3 and its impact on Earth's oxygen cycles. Nat Commun 2020;11:4702.

[26]

Tian Y, Jin L, Zhang HF, Xu Z, Wei XY, Politova ED, Stefanovich SY, Tarakina NV, Abrahams I, Yan H. High energy density in silver niobate ceramics. J Mater Chem 2016;4:17279.

[27]

Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D. Structure of ferroelectric silver niobate AgNbO3. Chem Mater 2011;23:1643.

[28]

Tian Y, Li J, Hu QY, Jin L, Yu K, Li JL, Politova ED, Stefanovich SY, Xu Z, Wei XY. Structure of ferroelectric silver niobate AgNbO3. J Mater Chem C 2019;7:1028.

[29]

Tian Y, Song PP, Viola G, Shi J, Li J, Jin L, Hu QY, Xu YH, Ge WY, Yan ZN, Zhang D, Tarakina NV, Abrahams I, Wei XY, Yan HX. Silver niobate perovskites: structure, properties and multifunctional applications. J Mater Chem 2022;10:14747.

[30]

Tian Y, Jin L, Feng YJ, Zhuang YY, Zhuo X, Wei XY. Progress of antiferroelectric pervoskite oxides. Prog Phys 2017;5:0155.

[31]

Cowley RA. Lattice dynamics and phase transitions of strontium titanate. Phys Rev 1964;134:891.

[32]

Yoshimitsu K. Lattice instability in SrTiO3. Prog Theor Phys 1975;54:583.

[33]

Sanjurjo JA, Cruz EL. High-pressure Raman study of zone-center phonons in PbTiO3. Phys Rev B 1983;28:7260.

[34]

Filho AGS, Lima KCV, Ayala AP, Guedes I, Freire PTC, Melo FEA, Filho JM, Araujo EB, Eiras JA. Raman scattering study of the PbZr1-xTixO3 system: rhombohedral-monoclinic-tetragonal phase transitions. Phys Rev B 2002;66:132107.

[35]

Kobayashi Y, Endo S, Ming LC, Deguchi K, Ashida T, Fujishita H. X-ray diffraction and dielectric measurements on PbZrO3 at high pressure: a phase transformation study. J Phys Chem Solid 1999;60:57.

[36]

Kornev IA, Bellaiche L. The nature of ferroelectricity under pressure. Phase Transitions 2007;80:385.

[37]

Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature 1992;358:138.

[38]

Cohen RE, Krakauer H. Electronic structure studies of the differences in ferroelectric behavior of BaTiO3 and PbTiO3. Ferroelectrics 1992;136:63.

Journal of Materiomics
Pages 431-439
Cite this article:
Dai K, Cui A, Li Y, et al. High pressure phase boundaries of AgNbO3. Journal of Materiomics, 2024, 10(2): 431-439. https://doi.org/10.1016/j.jmat.2023.07.004

185

Views

2

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 29 May 2023
Revised: 15 July 2023
Accepted: 17 July 2023
Published: 05 August 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return