AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Non-layered InSe nanocrystalline bulk materials with ultra-low thermal conductivity

Yifei LiuaTian-Ran Weia( )Jiangtao WubHexige WulijiaHaoran HuangaZhengyang Zhouc( )Kunpeng ZhaoaJie MabXun Shia,c( )
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Show Author Information

Graphical Abstract

Abstract

Exploring new prototypes for a given chemical composition is of great importance and interest to several disciplines. As a famous semiconducting binary compound, InSe usually exhibits a two-dimensional layered structure with decent physical and mechanical properties. However, it is less noticed that InSe can also adopt a monoclinic structure, denoted as mcl-InSe. The synthesis of such a phase usually requires high-pressure conditions, and the knowledge is quite scarce on its chemical bonding, lattice dynamics, and thermal transport. Here in this work, by developing a facile method combining mechanical alloying and spark plasma sintering, we successfully synthesize mcl-InSe bulks with well-crystallized nanograins. The chemical bonding of mcl-InSe is understood as compared with layered InSe via charge analysis. Low cut-off frequencies of acoustic phonons and several low-lying optical modes are demonstrated. Noticeably, mcl-InSe exhibits a low room-temperature thermal conductivity of 0.6 W·m−1·K−1, which is smaller than that of other materials in the In–Se system and many other selenides. Low-temperature thermal analyses corroborate the role of nanograin boundaries and low-frequency optical phonons in scattering acoustic phonons. This work provides new insights into the non-common prototype of the InSe binary compound with potential applications in thermoelectrics or thermal insulation.

References

[1]

Gu C, Xu H-M, Han S-K, Gao M-R, Yu SH. Soft chemistry of metastable metal chalcogenide nanomaterials. Chem Soc Rev 2021;50:6671–83. https://doi.org/10.1039/D0CS00881H.

[2]

Yue Y, Gao Y, Hu W, Xu B, Wang J, Zhang X, et al. Hierarchically structured diamond composite with exceptional toughness. Nature 2020;582:370–4. https://doi.org/10.1038/s41586-020-2361–2.

[3]

Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 2014;510:250–3. https://doi.org/10.1038/nature13381.

[4]

Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021;173:427–32. https://doi.org/10.1016/j.carbon.2020.11.013.

[5]

Wei T-R, Qiu P, Zhao K, Shi X, Chen L. Ag2Q-Based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv Mater 2023;35:2110236. https://doi.org/10.1002/adma.202110236.

[6]

Yang S, Gao Z, Qiu P, Liang J, Wei TR, Deng T, et al. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Adv Mater 2021;33:2007681. https://doi.org/10.1002/adma.202007681.

[7]

Peng L, Yang S, Wei T-R, Qiu P, Yang J, Zhang Z, et al. Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. J Materiomics 2022;8:656–61. https://doi.org/10.1016/j.jmat.2021.11.007.

[8]

Xing T, Zhu C, Song Q, Huang H, Xiao J, Ren D, et al. Ultralow lattice thermal conductivity and superhigh thermoelectric figure-of-merit in (Mg, Bi) Co-doped GeTe. Adv Mater 2021;33:2008773. https://doi.org/10.1002/adma.202008773.

[9]

Dong J, Sun F-H, Tang H, Pei J, Zhuang H-L, Hu HH, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ Sci 2019;12:1396–403. https://doi.org/10.1039/C9EE00317G.

[10]

Zhang X, Bu Z, Lin S, Chen Z, Li W, Pei Y. GeTe thermoelectrics. Joule 2020;4:986–1003. https://doi.org/10.1016/j.joule.2020.03.004.

[11]

Li H, Wang X. Phase control in inorganic nanocrystals through finely tuned growth at an ultrathin scale. Acc Chem Res 2019;52:780–90. https://doi.org/10.1021/acs.accounts.8b00645.

[12]

Wei T-R, Jin M, Wang Y, Chen H, Gao Z, Zhao K, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 2020;369:542–5. https://doi.org/10.1126/science.aba9778.

[13]

Jiang J, Xu L, Qiu C, Peng L-M. Ballistic two-dimensional InSe transistors. Nature 2023;616:470–5. https://doi.org/10.1038/s41586-023-05819-w.

[14]

Ma Y, Huang H, Liu Y, Chen H, Bai X, Zhao K, et al. Remarkable plasticity and softness of polymorphic InSe van der Waals crystals. J Materiomics 2023;9:709–16. https://doi.org/10.1016/j.jmat.2023.01.011.

[15]

Dai M, Gao C, Nie Q, Wang QJ, Lin YF, Chu J, et al. Properties, synthesis, and device applications of 2D layered InSe. Adv Mater Technol 2022;7:2200321. https://doi.org/10.1002/admt.202200321.

[16]

Bandurin DA, Tyurnina AV, Yu GL, Mishchenko A, Zólyomi V, Morozov SV, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat Nanotechnol 2017;12:223–7. https://doi.org/10.1038/Nnano.2016.242.

[17]

Lee KH, Oh M-W, Kim H-S, Shin WH, Lee K, Lim J-H, et al. Enhanced thermoelectric transport properties of n-type InSe due to the emergence of the flat band by Si doping. Inorg Chem Front 2019;6:1475–81. https://doi.org/10.1039/c9qi00210c.

[18]

Peng J, Snyder GJ. A figure of merit for flexibility. Science 2019;366:690–1. https://doi.org/10.1126/science.aaz5704.

[19]

Zhao Q, Frisenda R, Wang T, Castellanos-Gomez A. InSe: a two-dimensional semiconductor with superior flexibility. Nanoscale 2019;11:9845–50. https://doi.org/10.1039/C9NR02172H.

[20]

Han X. Ductile van der Waals materials. Science 2020;369:509. https://doi.org/10.1126/science.abd4527.

[21]

Zhang B, Wu H, Peng K, Shen X, Gong X, Zheng S, et al. Super deformability and thermoelectricity of bulk γ-InSe single crystals. Chin Phys B 2021;30:078101. https://doi.org/10.1088/1674-1056/abf133.

[22]

Gao Z, Wei T-R, Deng T, Qiu P, Xu W, Wang Y, et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat Commun 2022;13:7491. https://doi.org/10.1038/s41467-022-35229-x.

[23]

Chen H, Wei T-R, Zhao K, Qiu P, Chen L, He J, et al. Room-temperature plastic inorganic semiconductors for flexible and deformable electronics. InfoMat 2020;3:22-35. https://doi.org/10.1002/inf2.12149.

[24]

Vezzoli GC. Synthesis and properties of a pressure- and temperature-induced phase of indium selenide. Mater Res Bull 1971;6:1201–4. https://doi.org/10.1016/0025-5408(71)90055–9.

[25]

Ferlat G, Martínez-García D, San Miguel A, Aouizerat A, Muñoz-Sanjosé V. High pressure-high temperature phase diagram of InSe. High Pres Res 2004;24:111–6. https://doi.org/10.1080/08957950310001635756.

[26]

Zhao C, Yan W, Han S, Zhang W, Jin M, Liu D. Mechanically accessible band engineering via indentation-induced phase transition on two-dimensional layered β-InSe. Appl Surf Sci 2022;604:154573. https://doi.org/10.1016/j.apsusc.2022.154573.

[27]

Errandonea D, Martínez-García D, Segura A, Chevy A, Tobias G, Canadell E, et al. High-pressure, high-temperature phase diagram of InSe: a comprehensive study of the electronic and structural properties of the monoclinic phase of InSe under high pressure. Phys Rev B 2006;73:235202. https://doi.org/10.1103/physrevb.73.235202.

[28]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15-50. https://doi.org/10.1016/0927-0256(96)00008–0.

[29]

Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953. https://doi.org/10.1103/physrevb.50.17953.

[30]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1997;78:1396. https://doi.org/10.1103/PhysRevLett.78.1396.

[31]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010;132:154104. https://doi.org/10.1063/1.3382344.

[32]

Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 2008;41:653–8. https://doi.org/10.1107/S0021889808012016.

[33]

Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater 2015;108:1-5. https://doi.org/10.1016/j.scriptamat.2015.07.021.

[34]

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simulat Mater Sci Eng 2010;18:015012. https://doi.org/10.1088/0965-0393/18/1/015012.

[35]

Eriksson F, Fransson E, Erhart P. The hiphive package for the extraction of high-order force constants by machine learning. Adv Theory Simul 2019;2:1800184. https://doi.org/10.1002/adts.201800184.

[36]

Li J, Pan Y, Wu C, Sun F, Wei T. Processing of advanced thermoelectric materials. Sci China Technol Sci 2017;60:1347–64. https://doi.org/10.1007/s11431-017-9058–8.

[37]

Li Z, Li S, Castellan J-P, Heid R, Xiao Y, Zhao LD, et al. Anomalous transverse optical phonons in SnTe and PbTe. Phys Rev B 2022;105:014308. https://doi.org/10.1103/PhysRevB.105.014308.

[38]

Aouissi M, Hamdi I, Meskini N, Qteish A. Phonon spectra of diamond, Si, Ge, and α-Sn: calculations with real-space interatomic force constants. Phys Rev B 2006;74:054302. https://doi.org/10.1103/PhysRevB.74.054302.

[39]

Lin S, Li W, Li S, Zhang X, Chen Z, Xu Y, et al. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule 2017;1:816–30. https://doi.org/10.1016/j.joule.2017.09.006.

[40]

Errandonea D, Martínez-García D, Segura A, Haines J, Machado-Charry E, Canadell E, et al. High-pressure electronic structure and phase transitions in monoclinic InSe: X-ray diffraction, Raman spectroscopy, and density functional theory. Phys Rev B 2008;77:045208. https://doi.org/10.1103/physrevb.77.045208.

[41]

Kittel C, Mceuen P. Introduction to solid state physics. 2018. John Wiley & Sons.

[42]

Shi H, Wang D, Xiao Y, Zhao LD. Dynamic carrier transports and low thermal conductivity in n-type layered InSe thermoelectrics. Aggregate 2021;2:e92. https://doi.org/10.1002/agt2.92.

[43]

Cui J, Wang L, Du Z, Ying P, Deng Y. High thermoelectric performance of a defect in α-In2Se3-based solid solution upon substitution of Zn for in. J Mater Chem C 2015;3:9069–75. https://doi.org/10.1039/c5tc01977j.

[44]

Luu SDN, Supka AR, Nguyen VH, Vo DVN, Hung NT, Wojciechowski KT, et al. Origin of low thermal conductivity in In4Se3. ACS Appl Energy Mater 2020;3:12549–56. https://doi.org/10.1021/acsaem.0c02489.

[45]

Wei T-R, Wu C-F, Zhang X, Tan Q, Sun L, Pan Y, et al. Thermoelectric transport properties of pristine and Na-doped SnSe1-xTex polycrystals. Phys Chem Chem Phys 2015;17:30102–9. https://doi.org/10.1039/c5cp05510e.

[46]

Jin Z, Mao T, Qiu P, Yue Z, Wang L, Zhao K, et al. Thermoelectric properties and service stability of Ag-containing Cu2Se. Mater Today Phys 2021;21:100550. https://doi.org/10.1016/j.mtphys.2021.100550.

[47]

Zhou N-N, Hu Z-Q, Nasser R, Song J-M. Thermoelectric properties of PbSe nanocomposites from solution-processed building bocks. ACS Appl Energy Mater 2021;4:2014–9. https://doi.org/10.1021/acsaem.0c03255.

[48]

Cui J, Peng H, Song Z, Du Z, Chao Y, Chen G. Significantly enhanced thermoelectric performance of γ-In2Se3 through lithiation via chemical diffusion. Chem Mater 2017;29:7467–74. https://doi.org/10.1021/acs.chemmater.7b02467.

[49]

Callaway J. Model for lattice thermal conductivity at low temperatures. Phys Rev 1959;113:1046–51. https://doi.org/10.1103/PhysRev.113.1046.

[50]

Callaway J, Von Baeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev 1960;120:1149–54. https://doi.org/10.1103/PhysRev.120.1149.

[51]

Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem 2011;21:15843–52. https://doi.org/10.1039/C1JM11754H.

[52]

Pohl RO. Thermal conductivity and phonon resonance scattering. Phys Rev Lett 1962;8:481. https://doi.org/10.1103/PhysRevLett.8.481.

[53]

Huang Y, Lei J, Chen H, Zhou Z, Dong H, Yang S, et al. Intrinsically high thermoelectric performance in near-room-temperature α-MgAgSb materials. Acta Mater 2023;249:118847. https://doi.org/10.1016/j.actamat.2023.118847.

Journal of Materiomics
Pages 448-455
Cite this article:
Liu Y, Wei T-R, Wu J, et al. Non-layered InSe nanocrystalline bulk materials with ultra-low thermal conductivity. Journal of Materiomics, 2024, 10(2): 448-455. https://doi.org/10.1016/j.jmat.2023.07.006

202

Views

7

Crossref

5

Web of Science

5

Scopus

Altmetrics

Received: 05 June 2023
Revised: 04 July 2023
Accepted: 24 July 2023
Published: 03 August 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return