Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Magnetic materials with non-collinear spin orderings provide an outstanding platform to probe spintronic phenomena owing to their strong spin-orbit coupling (SOC) and unique Berry phase. It is thus important to obtain a non-collinear antiferromagnetic (AFM) phase at room temperature (RT). Significantly, the discovery of novel materials with nearly zero thermal expansion (ZTE) property near RT is required and pursued for avoiding thermal stress and fracture in spintronic devices. Herein, the doping of Sn (Ge) at the Ag site in the triangular lattice Mn3Ag1-xSn(Ge)xN compounds increases effectively the Néel point and makes the interesting non-collinear Γ5g AFM phase exist above RT. The magnetic phase diagrams with Γ5g phase up to 498 K were built by the combined analysis of neutron powder diffraction (NPD), magnetic measurements, electronic transport, and differential scanning calorimetry (DSC). The thermal expansion behaviors of Mn3Ag1-xSn(Ge)xN were modulated, and the nearly ZTE above RT was achieved in Mn3Ag0.5Ge0.5N within Γ5g AFM ordering. Our findings offer an effective way to tailor the non-collinear AFM ordering and correlated thermal expansion behavior for potential use in the emerging field of thermal stress-free magnetic chip materials.
Jungfleisch MB, Zhang W, Hoffmann A. Perspectives of antiferromagnetic spintronics. Phys Lett A 2018;382(13):865–71. https://doi.org/10.1016/j.physleta.2018.01.008.
Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y. Antiferromagnetic spintronics. Rev Mod Phys 2018;90(1):015005. https://doi.org/10.1103/RevModPhys.90.015005.
Železný J, Zhang Y, Felser C, Yan B. Spin-polarized current in noncollinear antiferromagnets. Phys Rev Lett 2017;119(18):187204. https://doi.org/10.1103/PhysRevLett.119.187204.
Nayak AK, Fischer JE, Sun Y, Yan B, Karel J, Komarek AC, et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci Adv 2016;2(4):e1501870. https://doi.org/10.1126/sciadv.1501870.
You Y, Chen X, Zhou X, Gu Y, Zhang R, Pan F, et al. Anomalous Hall effect–like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films. Adv Electron Mater 2019;5(3):1800818. https://doi.org/10.1002/aelm.201800818.
Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 2015;527(7577):212–5. https://doi.org/10.1038/nature15723.
Iwaki H, Kimata M, Ikebuchi T, Kobayashi Y, Oda K, Shiota Y, et al. Large anomalous Hall effect in L12-ordered antiferromagnetic Mn3Ir thin films. Appl Phys Lett 2020;116(2):022408. https://doi.org/10.1063/1.5128241.
Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron 2018;1(3):172–7. https://doi.org/10.1038/s41928-018-0040–1.
Huyen VTN, Suzuki MT, Yamauchi K, Oguchi T. Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt). Phys Rev B 2019;100(9):094426. https://doi.org/10.1103/PhysRevB.100.094426.
Nan T, Quintela CX, Irwin J, Gurung G, Shao DF, Gibbons J, et al. Controlling spin current polarization through non-collinear antiferromagnetism. Nat Commun 2020;11(1):4671. https://doi.org/10.1038/s41467-020-17999–4.
Hajiri T, Ishino S, Matsuura K, Asano H. Electrical current switching of the noncollinear antiferromagnet Mn3GaN. Appl Phys Lett 2019;115(5):052403. https://doi.org/10.1063/1.5109317.
Samathrakis I, Zhang H. Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN. Phys Rev B 2020;101(21):214423. https://doi.org/10.1103/PhysRevB.101.214423.
You Y, Bai H, Feng X, Fan X, Han L, Zhou X, et al. Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet. Nat Commun 2021;12(1):6524. https://doi.org/10.1038/s41467-021-26893–6.
Liu L, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin-torque switching with the giant spin Hall effect of tantalum. Science 2012;336(6081):555–8. https://doi.org/10.1126/science.1218197.
Zhou X, Hanke JP, Feng W, Li F, Guo GY, Yao Y, et al. Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag, or Ni. Phys Rev B 2019;99(10):104428. https://doi.org/10.1103/PhysRevB.99.104428.
Gurung G, Shao DF, Paudel TR, Tsymbal EY. Anomalous Hall conductivity of noncollinear magnetic antiperovskites. Phys Rev Mater 2019;3(4):044409. https://doi.org/10.1103/PhysRevMaterials.3.044409.
Boldrin D, Samathrakis I, Zemen J, Mihai A, Zou B, Johnson F, et al. Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films. Phys Rev Mater 2019;3(9):094409. https://doi.org/10.1103/PhysRevMaterials.3.094409.
Boldrin D, Johnson F, Thompson R, Mihai AP, Zou B, Zemen J, et al. The biaxial strain dependence of magnetic order in spin frustrated Mn3NiN thin films. Adv Funct Mater 2019;29(40):1902502. https://doi.org/10.1002/adfm.201902502.
Zhao K, Hajiri T, Chen H, Miki R, Asano H, Gegenwart P. Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1-xCuxN. Phys Rev B 2019;100(4):045109. https://doi.org/10.1103/PhysRevB.100.045109.
Kamishima K, Goto T, Nakagawa H, Miura N, Ohashi M, Mori N, et al. Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys Rev B 2020;63(2):024426. https://doi.org/10.1103/PhysRevB.63.024426.
Kim WS, Chi EO, Kim JC, Choi HS, Hur NH. Close correlation among lattice, spin, and charge in the manganese-based antiperovskite material. Solid State Commun 2001;119(8–9):507–10. https://doi.org/10.1016/S0038-1098(01)00279–4.
Deng S, Sun Y, Wu H, Huang Q, Yan J, Shi K, et al. Invar-like behavior of antiperovskite Mn3+xNi1-xN compounds. Chem Mater 2015;27(7):2495–501. https://doi.org/10.1021/cm504702m.
Song X, Sun Z, Huang Q, Rettenmayr M, Liu X, Seyring M, et al. Adjustable zero thermal expansion in antiperovskite manganese nitride. Adv Mater 2011;23(40):4690–4. https://doi.org/10.1002/adma.201102552.
Takenaka K, Takagi H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl Phys Lett 2005;87(26):261902. https://doi.org/10.1063/1.2147726.
Wang C, Chu L, Yao Q, Sun Y, Wu M, Ding L, et al. Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn,M)x N(M = Ag, Ge). Phys Rev B 2012;85(22):220103. https://doi.org/10.1103/PhysRevB.85.220103.
Deng S, Sun Y, Wang L, Wu H, Shi K, Hu P, et al. Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1-xN. Appl Phys Lett 2016;108(4):041908. https://doi.org/10.1063/1.4940912.
Ding L, Wang C, Chu L, Yan J, Na Y, Huang Q, et al. Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1-xCuxN. Appl Phys Lett 2011;99(25):251905. https://doi.org/10.1063/1.3671183.
Sun Y, Wang C, Chu L, Wen Y, Nie M, Liu F. Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound. Scripta Mater 2010;62(9):686–9. https://doi.org/10.1016/j.scriptamat.2010.01.027.
Takenaka K, Ozawa A, Shibayama T, Kaneko NH, Oe T, Urano C. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ni1-xCuxN. Appl Phys Lett 2011;98(2):022103. https://doi.org/10.1063/1.3541449.
Turchenko V, Trukhanov A, Trukhanov S, Balasoiu M, Lupu N. Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J Magn Magn Mater 2019;477:9-16. https://doi.org/10.1016/j.jmmm.2018.12.101.
Zdorovets MV, Kozlovskiy AL, Shlimas DI, Borgekov DB. Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci Mater Electron 2021;32(12):16694–705. https://doi.org/10.1007/s10854-021-06226–5.
Fruchart D, F Bertaut E. Magnetic studies of the metallic perovskite-type compounds of manganese. J Phys Soc Jpn 1978;44(3):781–91. https://doi.org/10.1143/JPSJ.44.781.
Chu L, Wang C, Yan J, Na Y, Ding L, Sun Y, et al. Magnetic transition, lattice variation and electronic transport properties of Ag-doped Mn3Ni1-xAgxN antiperovskite compounds. Scripta Mater 2012;67(2):173–6. https://doi.org/10.1016/j.scriptamat.2012.04.008.
Kadowaki Y, Kasugai R, Yokoyama Y, Katayama N, Okamoto Y, Takenaka K. Structural phase transition and giant negative thermal expansion in pyrophosphate Zn2-xMgxP2O7. Appl Phys Lett 2021;119(20):201906. https://doi.org/10.1063/5.0073761.
Sun Y, Wang C, Wen Y, Chu L, Pan H, Nie M, et al. Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1−xSnxN compounds. J Am Ceram Soc 2010;93(8):2178–81. https://doi.org/10.1111/j.1551-2916.2010.03711.x.
Kodama K, Iikubo S, Takenaka K, Takigawa M, Takagi H, Shamoto S. Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1-xGexN (x~0.5). Phys Rev B 2010;81(22):224419. https://doi.org/10.1103/PhysRevB.81.224419.
Takenaka K, Asano K, Misawa M, Takagi H. Negative thermal expansion in Ge-free antiperovskite manganese nitrides: tin-doping effect. Appl Phys Lett 2008;92(1):011927. https://doi.org/10.1063/1.2831715.
Tong P, Louca D, King G, Llobet A, Lin JC, Sun YP. Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1-xSnxNMn3. Appl Phys Lett 2013;102(4):041908. https://doi.org/10.1063/1.4790151.
Mochizuki M, Kobayashi M, Okabe R, Yamamoto D. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets. Phys Rev B 2018;97(6):060401. https://doi.org/10.1103/PhysRevB.97.060401.
Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys Rev Lett 2008;101(20):205901. https://doi.org/10.1103/PhysRevLett.101.205901.
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993;192(1–2):55–69. https://doi.org/10.1016/0921-4526(93)90108-I.
Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A 1991;43(6):3161–4. https://doi.org/10.1103/PhysRevA.43.3161.
Shaked H,, Hitterman RL. Low-temperature magnetic structure of MnO: a high-resolution neutron-diffraction study. Phys Rev B Condens Matter 1988;38(16):11901–3. https://doi.org/10.1103/PhysRevB.38.11901.
Dai Y, Song X, Huang R, Li L, Sun Z. Effect of Si doping on structure, thermal expansion and magnetism of antiperovskite manganese nitrides Mn3Cu1-xSixN. Mater Lett 2015;139:409–13. https://doi.org/10.1016/j.matlet.2014.10.136.
Lin S, Wang BS, Tong P, Hu L, Huang YN, Lu WJ, et al. Effects of carbon content on structural, magnetic, and electrical/thermal transport properties of antiperovskite compounds GaCxFe3. J Appl Phys 2013;113(10):103906. https://doi.org/10.1063/1.4795139.
Xie LL, Shi TF, Lin JC, Zhang XK, Zhong XK, Liu KK, et al. The enhanced negative thermal expansion in less-oxygen-vacancies copper pyrophosphate. J Mater Sci Technol 2023;146:80–5. https://doi.org/10.1016/j.jmst.2022.10.054.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).