AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

One-dimensional core-sheath Sn/SnOx derived from MAX phase for microwave absorption

Feiyue HuaPeigen Zhanga,( )Fushuo WuaZhihua TianaHaifeng TangaBingbing FanbRui ZhangbWenwen SunaLongzhu CaicZheng Ming Suna,( )
School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
The State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

One-dimensional (1D) metals are highly conductive and tend to form networks that facilitate electron hopping and migration. Hence, they have tremendous potential as microwave-absorbing (MA) materials. Traditionally, 1D metals are mainly precious metals such as gold, silver, nickel, and their preparation methods often have low yield and are not environmentally friendly, which has limited the exploration in this area. Herein, the unique nanolaminate structure and chemical bond characteristics of Ti2SnC MAX phase is successfully taken advantages for large-scale preparation of Sn whiskers, and then, core-sheath Sn/SnOx heterojunctions are obtained by simply annealing at different temperatures. The heterojunction annealed at 500 ℃ possesses favorable MA performance with an effective absorption bandwidth of 5.3 GHz (only 1.7 mm) and a minimum reflection loss value of −51.97 dB; its maximum radar cross section (RCS) reduction value is 29.59 dB·m2, confirming its excellent electromagnetic wave attenuation ability. Off-axis electron holography is used to visually characterize the distribution of charge density at the cylindrical heterogenous interface, confirming the enhanced interfacial polarization effect. Given the diversity of MAX phases and the advantages of the fabrication method (e.g., green, inexpensive, and easily scalable), this work provides significant guidance for the design of 1D metal-based absorbers.

References

[1]

Huang Z, Cheng J, Zhang H, Xiong Y, Zhou Z, Zheng Q, et al. High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J Mater Sci Technol 2022;107:155–64.

[2]

Zhang H, Liu T, Huang Z, Cheng J, Wang H, Zhang D, et al. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J Materiomics 2022;8(2):327–34.

[3]

Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, et al. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater 2022;34:2107538.

[4]

Cheng J, Zhang H, Xiong Y, Gao L, Wen B, Raza H, et al. Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J Materiomics 2021;7(6):1233–63.

[5]

Wu F, Tian Z, Hu P, Tang J, Xu X, Pan L, et al. Lightweight and flexible PAN@PPy/MXene films with outstanding electromagnetic interference shielding and Joule heating performance. Nanoscale 2022;14(48):18133–42.

[6]

Shang S, Zhao N, Chen Y, Wang X, Hu F, Fan B, et al. Ti3C2Tx/rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm 2022;24(25):4556–63.

[7]

Liang L, Gu W, Wu Y, Zhang B, Wang G, Yang Y, et al. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv Mater 2022;34(4):2106195.

[8]

Hu R, Pan D, Xu X, Xiao B, Wang H. Tunable natural resonances via synergistic effects of two phases in Fex(CoyNi1-y)100-x for multi-band microwave absorption. J Materiomics 2023;9(1):90–8.

[9]

Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, et al. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 2016;28(3):486–90.

[10]

Liu S, Guo Y, Dong S, Cheng Y, Zhang Z, Wang H, et al. Facile synthesis of a Sn/SnO2@C ternary composite with superior broader frequency performance. J Alloys Compd 2017;711:184–9.

[11]

Wang J, Jia Z, Liu X, Dou J, Xu B, Wang B, et al. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett 2021;13(1):175.

[12]

Tan L, Lv J, Xu X, Zhao H, He C, Wang H, et al. Construction of MXene/NiO composites through in-situ precipitation strategy for dispersibility improvement of NiO nanoparticles. Ceram Int 2019;45(5):6597–600.

[13]

Wang B, Wu Q, Fu Y, Liu T. A review on carbon/magnetic metal composites for microwave absorption. J Mater Sci Technol 2021;86:91–109.

[14]

Fu H, Guo Y, Yu J, Shen Z, Zhao J, Xie Y, et al. Tuning the shell thickness of core-shell α-Fe2O3@SiO2 nanoparticles to promote microwave absorption. Chin Chem Lett 2022;33(2):957–62.

[15]

Zhao B, Guo X, Zhao W, Deng J, Shao G, Fan B, et al. Yolk-Shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces 2016;8(42):28917–25.

[16]

Yang P-A, Huang Y, Li R, Huang X, Ruan H, Shou M, et al. Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem Eng J 2022;430:132878.

[17]

Wu X, Li H, Wang W, Su D, Wang X, Tao X, et al. Template-less synthesis of coded Au nanowires. Nano Lett 2021;21(2):1156–60.

[18]

Sheng A, Yang Y, Yan D-X, Dai K, Duan H, Zhao G, et al. Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption. Carbon 2020;167:530–40.

[19]

Ding H, Li Y, Li M, Chen Y, Liang K, Chen G, et al. Chemical scissor–mediated structural editing of layered transition metal carbides. Science 2023;379:1130–5.

[20]

Oh T, Lee S, Kim H, Ko TY, Kim SJ, Koo CM. Fast and high-yield anhydrous synthesis of Ti3C2Tx MXene with high electrical conductivity and exceptional mechanical strength. Small 2022;18(46):2203767.

[21]

Tang J, Tang H, Tian Z, Wu F, Zhang P, Sun Z. Indium (In) whisker growth from MAB phase Ti2InB2. J Mater Sci Mater Electron 2023;34:1303.

[22]

Tian Z, Xu X, Tang J, Zhang Q, Wu F, Zhang P, et al. Large-scale preparation of nano-sized carbides and metal whiskers via mechanochemical decomposition of MAX phases. Int J Appl Ceram Technol 2023;20(2):823–32.

[23]

Zhang Q, Tian Z, Zhang P, Zhang Y, Liu Y, He W, et al. Rapid and massive growth of tin whisker on mechanochemically decomposed Ti2SnC. Mater Today Commun 2022;31:103466.

[24]

Liu Y, Lu C, Zhang P, Yu J, Zhang Y, Sun ZM. Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics. Acta Mater 2020;185:433–40.

[25]

Li Z, Zhang C, Bu J, Zhang L, Cheng L, Wu M. Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability. Carbon 2022;194:197–206.

[26]

Qiao M, Li J, Chen T, He X, Meng M, Lei X, et al. One-dimensional Ag-CoNi nanocomposites modified with amorphous Sn(OH)2/SnO2 shells for broadband microwave absorption. J Colloid Interface Sci 2021;604:616–23.

[27]

Tian Z, Zhang P, Zhang Y, Tang J, Liu Y, Liu J, et al. Tin whisker growth from titanium-tin intermetallic and the mechanism. J Mater Sci Technol 2022;129:79–86.

[28]

Du H, Zhang Q, Zhao B, Marken F, Gao Q, Lu H, et al. Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J Adv Ceram 2021;10(5):1042–51.

[29]

Zhang D, Wang H, Cheng J, Han C, Yang X, Xu J, et al. Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Appl Surf Sci 2020;528:147052.

[30]

Zhang C, Wu Z, Xu C, Yang B, Wang L, You W, et al. Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 2022;18(3):2104380.

[31]

Wang S, Li D, Zhou Y, Jiang L. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 2020;14(7):8634–45.

[32]

Qian X, Zhang Y, Wu Z, Zhang R, Li X, Wang M, et al. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 2021;17(30):2100283.

[33]

Wang D, Saleem MF, Javid M, Qu X, Farid A, Irfan M, et al. Formation of Sn filled CNTs nanocomposite: study of their magnetic, dielectric properties and enhanced microwave absorption performance at gigahertz frequencies. Ceram Int 2022;48(15):22002–12.

[34]

Hu F, Wang X, Niu H, Zhang S, Fan B, Zhang R. Synthesis and electromagnetic wave absorption of novel Mo2TiC2Tx MXene with diverse etching methods. J Mater Sci 2022;57:7849–62.

[35]

Hu F, Wang X, Bao S, Song L, Zhang S, Niu H, et al. Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies. Chem Eng J 2022;440:135855.

[36]

Ma W, Yang R, Wang T. ZnO nanorod-based microflowers decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. ACS Appl Nano Mater 2020;3(8):8319–27.

[37]

Li T, Xia L, Yang H, Wang X, Zhang T, Huang X, et al. Construction of a Cu-Sn heterojunction interface derived from a Schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl Mater Interfaces 2021;13(10):11911–9.

[38]

Lv J, Liang X, Ji G, Quan B, Liu W, Du Y. Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities. ACS Sustainable Chem Eng 2018;6(6):7239–49.

[39]

Li T-t, Wang C, An Y, Xia L, Wang X-y, Huang X-x. Tunable and ultraefficient microwave absorptivity in SnO2/Sn/rGO composites via enhanced polarization effect. J Alloys Compd 2023;930:167250.

[40]

Lu X, Li X, Wang Y, Hu W, Zhu W, Zhu D, et al. Construction of ZnIn2S4 nanosheets/3D carbon heterostructure with Schottky contact for enhancing electromagnetic wave absorption performance. Chem Eng J 2022;431:134078.

[41]

Zhang F, Chen Y, Ren Y, Zheng Q, Wang L, Jiang W. Anionic MOF derived Bimetallic NixCoy@Nano-porous carbon composites toward strong and efficient electromagnetic wave absorption. J Materiomics 2022;8(4):852–62.

[42]

Lv S, Cheng Y, Chen F, Li X, Luo H. Multiple interfacial Fe3C/MnO/NC composites towards high-performance microwave absorption. J Alloys Compd 2023;965:171338.

[43]

Wang X, Bao S, Hu F, Shang S, Chen Y, Zhao N, et al. The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures. Ceram Int 2022;48(12):16892–900.

[44]

Hu F, Zhang F, Wang X, Li Y, Wang H, Zhang R, et al. Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J Adv Ceram 2022;11(9):1466–78.

[45]

Zhang S, Liu G, Lv S, Zhu Y, Chen P, Luo H, et al. Ti-MOF@Metal-polyphenol network derived TiN0.9@NC/magnetic MWCNTs composites for microwave absorption. Chem Eng J 2023;468:143763.

[46]

Lv H, Wu C, Tang J, Du H, Qin F, Peng H, et al. Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem Eng J 2021;411:128445.

[47]

Huang W, Gao W, Zuo S, Zhang L, Pei K, Liu P, et al. Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale hetero-interfaces. J Mater Chem A 2022;10(3):1290–8.

[48]

Niu H, Tu X, Zhang S, Li Y, Wang H, Shao G, et al. Engineered core-shell SiO2@Ti3C2Tx composites: towards ultra-thin electromagnetic wave absorption materials. Chem Eng J 2022;446:137260.

[49]

Jin C, Wu Z, Zhang R, Qian X, Xu H, Che R. 1D electromagnetic-gradient hierarchical carbon microtube via coaxial electrospinning design for enhanced microwave absorption. ACS Appl Mater Interfaces 2021;13(13):15939–49.

[50]

Du B, Cai M, Wang X, Qian J, He C, Shui A. Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J Adv Ceram 2021;10(4):832–42.

[51]

Li X, Wen C, Yang L, Zhang R, Li X, Li Y, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 2021;175:509–18.

Journal of Materiomics
Pages 531-542
Cite this article:
Hu F, Zhang P, Wu F, et al. One-dimensional core-sheath Sn/SnOx derived from MAX phase for microwave absorption. Journal of Materiomics, 2024, 10(3): 531-542. https://doi.org/10.1016/j.jmat.2023.07.014

134

Views

4

Crossref

5

Web of Science

5

Scopus

Altmetrics

Received: 28 June 2023
Revised: 28 July 2023
Accepted: 31 July 2023
Published: 17 August 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return