AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Surface chemistry engineering and the applications of MXenes

Guohao Li,1Shuhan Lian,1Jie Wang,1Guanshun XieNan ZhangXiuqiang Xie,( )
College of Materials Science and Engineering, Hunan University, China

1 These authors contributed equally to this work

Show Author Information

Graphical Abstract

Abstract

MXenes have captured extensive attention in various fields by virtue of unique hydrophilicity, high conductivity and tunable surface terminations. In this review, the state-of-the-art progresses of designing functional MXenes have been summarized. Firstly, the synthesis methods of MXenes are summarized and classified into HF etching, in-situ HF etching and fluoride-free etching approaches based on the effect on the surface chemistry of MXenes. Secondly, the factors that affect the surface termination groups are discussed, including synthesis methods, heat treatment temperature and atmosphere. Thirdly, this review gives an overview of the synthetic routes of functional MXenes including termination modification by synthesis methods and heat treatment, heteroatom (N, S, or P) doping, cation and organic molecule intercalation and hybridization with polymer, which inhibit restacking and increase active sites for intrinsically enhancing the inherent physical and chemical properties of MXenes. Finally, the applications with respect to energy storage and conversion, catalysis, sensors, electromagnetic interference shielding and microwave absorption of functional MXenes are introduced. Additionally, the critical challenges and development prospects of functional MXenes are also highlighted.

References

[1]

Sánchez-Portal D, Hernández E. Vibrational properties of single-wall nanotubes and monolayers of hexagonal BN. Phys Rev B 2002;66(23):235415.

[2]

Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater 2017;2(8):17033.

[3]

Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett 2010;97(22):223109.

[4]

Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas'ev VV, Stesmans A. Electronic properties of hydrogenated silicene and germanene. Appl Phys Lett 2011;98(22):223107.

[5]

Carvalho A, Wang M, Zhu X, Rodin AS, Su H, Castro Neto AH. Phosphorene: from theory to applications. Nat Rev Mater 2016;1(11):16061.

[6]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306(5696):666.

[7]

Meng S, Kong T, Ma W, Wang H, Zhang H. 2D Crystal–based fibers: status and challenges. Small 2019;15(39):1902691.

[8]

Miró P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chem Soc Rev 2014;43(18):6537–54.

[9]

Wu L, Dong Y, Zhao J, Ma D, Huang W, Zhang Y, et al. Kerr bonlinearity in 2D graphdiyne for passive photonic diodes. Adv Mater 2019;31(14):1807981.

[10]

Bollella P, Fusco G, Tortolini C, Sanzò G, Favero G, Gorton L, et al. Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron 2017;89:152–66.

[11]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23(37):4248–53.

[12]

Li G, Wyatt BC, Song F, Yu C, Wu Z, Xie X, et al. 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv Funct Mater 2021;31(46):2105043.

[13]

Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for synthesis and processing of two-Dimensional yitanium carbide (Ti3C2T MXene). Chem Mater 2017;29(18):7633–44.

[14]

Magnuson M, Mattesini M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 2017;621:108–30.

[15]

Yu C, Peng L, Zhu Y, Xie G, Wu Z, Xie X, et al. Electrostatically confined Bi/Ti3C2T on a sponge as an easily recyclable and durable catalyst for the reductive transformation of nitroarenes. J Mater Chem 2021;9(35):19847–53.

[16]

Song F, Li G, Zhu Y, Wu Z, Xie X, Zhang N. Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. J Mater Chem 2020;8(36):18538–59.

[17]

Haemers J, Gusmão R, Sofer Z. Synthesis protocols of the most common layered carbide and nitride MAX Phases. Small Methods 2020;4(3):1900780.

[18]

Kayali E, VahidMohammadi A, Orangi J, Beidaghi M. Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Appl Mater Interfaces 2018;10(31):25949–54.

[19]

Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano 2019;13(8):8491–4.

[20]

Lei J-C, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Front Physiol 2015;10(3):276–86.

[21]

Xiong D, Li X, Bai Z, Lu S. Recent advances in layered Ti3C2T MXene for electrochemical energy storage. Small 2018;14(17):e1703419.

[22]

Li J, Guo C, Li CM. Recent advances of two-dimensional (2D) MXenes and phosphorene for high-performance rechargeable batteries. ChemSusChem 2020;13(6):1047–70.

[23]

Xu X, Sha D, Tian Z, Wu F, Zheng W, Yang L, et al. Lithium storage performance and mechanism of nano-sized Ti2InC MAX phase. Nanoscale Horiz 2023;8(3):331–7.

[24]

Yin X, Zheng W, Tang H, Zhang P, Sun Z. Novel 2D/2D 1T-MoS 2/Ti3C2Tz heterostructures for high-voltage symmetric supercapacitors. Nanoscale 2023;15:10437–46.

[25]

Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 2017;8(1):13907.

[26]

Sun Y, Jin D, Sun Y, Meng X, Gao Y, Dall'Agnese Y, et al. g-C3N4/Ti3C2T (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J Mater Chem 2018;6(19):9124–31.

[27]

Zhu Y, Xie G, Li G, Song F, Yu C, Wu Z, et al. Facial synthesis of two-dimensional In2S3/Ti3C2T heterostructures with boosted photoactivity for the hydrogenation of nitroaromatic compounds. Mater Chem Front 2021;5(18):6883–90.

[28]

Xie X, Zhang N. Positioning MXenes in the photocatalysis landscape: competitiveness, challenges, and future perspectives. Adv Funct Mater 2020;30(36):2002528.

[29]

Seredych M, Shuck CE, Pinto D, Alhabeb M, Precetti E, Deysher G, et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem Mater 2019;31(9):3324–32.

[30]

Wang Z, Cheng Z, Fang C, Hou X, Xie L. Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Compos - A: Appl 2020;136:105956.

[31]

Fard AK, McKay G, Chamoun R, Rhadfi T, Preud'Homme H, Atieh MA. Barium removal from synthetic natural and produced water using MXene as two dimensional (2D) nanosheet adsorbent. J Chem Eng 2017;317:331–42.

[32]

Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. J Chem Eng 2020;388:124340.

[33]

Sinha A, Dhanjai, Zhao H, Huang Y, Lu X, Chen J, et al. MXene: an emerging material for sensing and biosensing. Trends Anal Chem 2018;105:424–35.

[34]

Zhao L, Wang K, Wei W, Wang L, Han W. High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 2019;1(3):407–16.

[35]

Lian W, Mai Y, Liu C, Zhang L, Li S, Jie X. Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology. Ceram Int 2018;44(16):20154–62.

[36]

Rosenkranz A, Grützmacher PG, Espinoza R, Fuenzalida VM, Blanco E, Escalona N, et al. Multi-layer Ti3C2T-nanoparticles (MXenes) as solid lubricants – role of surface terminations and intercalated water. Appl Surf Sci 2019;494:13–21.

[37]

Harris KJ, Bugnet M, Naguib M, Barsoum MW, Goward GR. Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CT Using NMR spectroscopy. J Phys Chem C 2015;119(24):13713–20.

[38]

Wang X, Shen X, Gao Y, Wang Z, Yu R, Chen L. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2T. J Am Chem Soc 2015;137(7):2715–21.

[39]

Karlsson LH, Birch J, Halim J, Barsoum MW, Persson POÅ. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett 2015;15(8):4955–60.

[40]

Mičušík M, Šlouf M, Stepura A, Soyka Y, Ovodok E, Procházka M, et al. Aging of 2D MXene nanoparticles in air: an XPS and TEM study. Appl Surf Sci 2023;610:155351.

[41]

Ling C, Shi L, Ouyang Y, Wang J. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater 2016;28(24):9026–32.

[42]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26(7):992–1005.

[43]

Xie Y, Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y, Yu X, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 2014;136(17):6385–94.

[44]

Xie Y, Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y, Yu X, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 2014;136(17):6385–94.

[45]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23(37):4248–53.

[46]

Zha X-H, Luo K, Li Q, Huang Q, He J, Wen X, et al. Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL 2015;111(2):26007.

[47]

Xiao Y, Hwang JY, Sun YK. Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. J Mater Chem 2016;4(27):10379–93.

[48]

Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun 2015;6(1):6544.

[49]

Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014;516(7529):78–81.

[50]

Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2016;2(12).

[51]

Li G, Tan L, zhang Y, Wu B, Li L. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir 2017;33(36):9000–6.

[52]

Li T, Yao L, Liu Q, Gu J, Luo R, Li J, et al. Fluorine-free synthesis of high-purity Ti3C2T (T = OH, O) via alkali treatment. Angew Chem Int Ed 2018;57(21):6115–9.

[53]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23(37):4248–53.

[54]

Chaudhari NK, Jin H, Kim B, San Baek D, Joo SH, Lee K. MXene: an emerging two-dimensional material for future energy conversion and storage applications. J Mater Chem 2017;5(47):24564–79.

[55]

Gao L, Li C, Huang W, Mei S, Lin H, Ou Q, et al. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem Mater 2020;32(5):1703–47.

[56]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2(2):1–17.

[57]

Wang H-W, Naguib M, Page K, Wesolowski DJ, Gogotsi Y. Resolving the structure of Ti3C2T MXenes through multilevel structural modeling of the atomic pair distribution function. Chem Mater 2015;28(1):349–59.

[58]

Hu M, Hu T, Li Z, Yang Y, Cheng R, Yang J, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2T MXene. ACS Nano 2018;12(4):3578–86.

[59]

Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2016;2(12):1600255.

[60]

Liu F, Zhou A, Chen J, Jia J, Zhou W, Wang L, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci 2017;416:781–9.

[61]

Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Näslund LÅ, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 2014;26(7):2374–81.

[62]

Wang X, Garnero C, Rochard G, Magne D, Morisset S, Hurand S, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J Mater Chem 2017;5(41):22012–23.

[63]

Hope MA, Forse AC, Griffith KJ, Lukatskaya MR, Ghidiu M, Gogotsi Y, et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys 2016;18(7):5099–102.

[64]

Xie X, Xue Y, Li L, Chen S, Nie Y, Ding W, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 2014;6(19):11035–40.

[65]

Li T, Yao L, Liu Q, Gu J, Luo R, Li J, et al. Fluorine-free synthesis of high-purity Ti3C2T (T = OH, O) via alkali treatment. Angew Chem Int Ed Engl 2018;57(21):6115–9.

[66]

Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed 2016;128(47):14789–94.

[67]

Yin T, Li Y, Wang R, Al-Hartomy OA, Al-Ghamdi A, Wageh S, et al. Synthesis of Ti3C2F MXene with controllable fluorination by electrochemical etching for lithium-ion batteries applications. Ceram Int 2021;47(20):28642–9.

[68]

Yang S, Zhang P, Wang F, Ricciardulli AG, Lohe MR, Blom PWM, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed 2018;57(47):15491–5.

[69]

Wang Y, Dou H, Wang J, Ding B, Xu Y, Chang Z, et al. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources 2016;327:221–8.

[70]

Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 2016;28(17):3333–9.

[71]

Mashtalir O, Lukatskaya MR, Kolesnikov AI, Raymundo-Pinero E, Naguib M, Barsoum MW, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 2016;8(17):9128–33.

[72]

Yoon Y, Le TA, Tiwari AP, Kim I, Barsoum MW, Lee H. Low temperature solution synthesis of reduced two dimensional Ti3C2 MXenes with paramagnetic behaviour. Nanoscale 2018;10(47):22429–38.

[73]

Xu S, Wei G, Li J, Ji Y, Klyui N, Izotov V, et al. Binder-free Ti3C2T MXene electrode film for supercapacitor produced by electrophoretic deposition method. J Chem Eng 2017;317:1026–36.

[74]

Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem 2017;5(42):22113–9.

[75]

Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial activity of Ti3C2T MXene. ACS Nano 2016;10(3):3674–84.

[76]

Lin Z, Barbara D, Taberna P-L, Van Aken KL, Anasori B, Gogotsi Y, et al. Capacitance of Ti3C2T MXene in ionic liquid electrolyte. J Power Sources 2016;326:575–9.

[77]

Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 2020;19(8):894–9.

[78]

Ding H, Li Y, Li M, Chen K, Liang K, Chen G, et al. Chemical scissor–mediated structural editing of layered transition metal carbides. Science 2023;379(6637):1130–5.

[79]

Wang D, Zhou C, Filatov AS, Cho W, Lagunas F, Wang M, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023;379(6638):1242–7.

[80]

Lu M, Li H, Han W, Chen J, Shi W, Wang J, et al. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J Energy Chem 2019;31:148–53.

[81]

Gentile A, Ferrara C, Tosoni S, Balordi M, Marchionna S, Cernuschi F, et al. Enhanced functional properties of Ti3C2T MXenes as negative electrodes in sodium-ion batteries by chemical tuning. Small Methods 2020;4(9):235415.

[82]

Li Z, Wang L, Sun D, Zhang Y, Liu B, Hu Q, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B 2015;191:33–40.

[83]

Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT MXene electrodes for supercapacitor applications. Chem Mater 2015;27(15):5314–23.

[84]

Zhang M, Chen X, Sui J, Abraha BS, Li Y, Peng W, et al. Improving the performance of a titanium carbide MXene in supercapacitors by partial oxidation treatment. Inorg Chem Front 2020;7(5):1205–11.

[85]

Wang J, Xie G, Yu C, Peng L, Zhu Y, Xie X, et al. Stabilizing Ti3C2T in a water medium under multiple environmental conditions by scavenging oxidative free radicals. Chem Mater 2022;34(21):9517–26.

[86]

Xie X, Chen C, Zhang N, Tang Z-R, Jiang J, Xu Y-J. Microstructure and surface control of MXene films for water purification. Nat Sustain 2019;2(9):856–62.

[87]

Xu J, Liu Z, Wang Q, Li J, Huang Y, Wang M, et al. Facile tailoring of surface terminations of MXenes by doping Nb element: toward extraordinary pseudocapacitance performance. ACS Appl Mater Interfaces 2023;15(12):15367–76.

[88]

Song Y, Sun Z, Fan Z, Cai W, Shao Y, Sheng G, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 2020;70:104555.

[89]

Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, et al. Nitrogen-doped Ti3C2T MXene electrodes for high-performance supercapacitors. Nano Energy 2017;38:368–76.

[90]

Li J, Yan D, Hou S, Li Y, Lu T, Yao Y, et al. Improved sodium-ion storage performance of Ti3C2T MXenes by sulfur doping. J Mater Chem 2018;6(3):1234–43.

[91]

Sun S, Xie Z, Yan Y, Wu S. Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. J Chem Eng 2019;366:460–7.

[92]

Yoon Y, Tiwari AP, Choi M, Novak TG, Song W, Chang H, et al. Precious-metal-free electrocatalysts for activation of hydrogen evolution with nonmetallic electron donor: chemical composition controllable phosphorous doped vanadium carbide MXene. Adv Funct Mater 2019;29(30):1903443.

[93]

Liu S, Hu F, Shao W, Zhang W, Zhang T, Song C, et al. A novel strategy of in situ trimerization of cyano groups between the Ti3C2T (MXene) interlayers for high-energy and high-power sodium-ion capacitors. Nano-Micro Lett 2020;12(1):1–15.

[94]

Yang C, Tang Y, Tian Y, Luo Y, Faraz Ud Din M, Yin X, et al. Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an Ex Situ solvothermal method with extraordinary volumetric capacitance. Adv Energy Mater 2018;8(31):1802087.

[95]

Fan Z, Wei C, Yu L, Xia Z, Cai J, Tian Z, et al. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-Performance sodium-Ion hybrid capacitors. ACS Nano 2020;14(1):867–76.

[96]

Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 2014;6(14):11173–9.

[97]

Bao W, Shuck CE, Zhang W, Guo X, Gogotsi Y, Wang G. Boosting performance of Na-S batteries using sulfur-doped Ti3C2T MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019;13(10):11500–9.

[98]

Liu R, Cao W, Han D, Mo Y, Zeng H, Yang H, et al. Nitrogen-doped Nb2CTx MXene as anode materials for lithium ion batteries. J Alloys Compd 2019;793:505–11.

[99]

Bao W, Liu L, Wang C, Choi S, Wang D, Wang G. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater 2018;8(13):1702485.

[100]

Tang Y, Zhu J, Wu W, Yang C, Lv W, Wang F. Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance. J Electrochem Soc 2017;164(4): A923.

[101]

Yang C, Que W, Yin X, Tian Y, Yang Y, Que M. Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta 2017;225:416–24.

[102]

Zhang T, Xiao J, Li L, Zhao J, Gao H. A high-performance supercapacitor electrode based on freestanding N-doped Ti3C2T film. Ceram Int 2020;46(13):21482–8.

[103]

Yang C, Tang Y, Tian Y, Luo Y, Yin X, Que W. Methanol and diethanolamine assisted synthesis of flexible nitrogen-doped Ti3C2 (MXene) film for ultrahigh volumetric performance supercapacitor electrodes. ACS Appl Energy Mater 2019;3(1):586–96.

[104]

Yu L, Fan Z, Shao Y, Tian Z, Sun J, Liu Z. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv Energy Mater 2019;9(34):1901839.

[105]

Tian Y, Que W, Luo Y, Yang C, Yin X, Kong LB. Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J Mater Chem 2019;7(10):5416–25.

[106]

Le TA, Bui QV, Tran NQ, Cho Y, Hong Y, Kawazoe Y, et al. Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustainable Chem Eng 2019;7(19):16879–88.

[107]

Yoon Y, Tiwari AP, Lee M, Choi M, Song W, Im J, et al. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J Mater Chem 2018;6(42):20869–77.

[108]

Han M, Yang J, Jiang J, Jing R, Ren S, Yan C. Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction. J Colloid Interface Sci 2021;582(Pt B):1099–106.

[109]

Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed 2015;54(13):3907–11.

[110]

Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341(6153):1502–5.

[111]

Li J, Yuan X, Lin C, Yang Y, Xu L, Du X, et al. Achieving High Pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 2017;7(15):1602725.

[112]

Mashtalir O, Lukatskaya MR, Zhao M-Q, Barsoum MW, Gogotsi Y. Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Adv Mater 2015;27(23):3501–6.

[113]

Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 2013;4(1):1716.

[114]

Qian A, Seo JY, Shi H, Lee JY, Chung CH. Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2T MXene. ChemSusChem 2018;11(21):3719–23.

[115]

Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 2017;11(3):2459–69.

[116]

Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016;10(2):2491–9.

[117]

Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 2016;28(7):1517–22.

[118]

VahidMohammadi A, Moncada J, Chen H, Kayali E, Orangi J, Carrero CA, et al. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J Mater Chem 2018;6(44):22123–33.

[119]

Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 2014;111(47):16676–81.

[120]

He P, Cao M-S, Cai Y-Z, Shu J-C, Cao W-Q, Yuan J. Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon 2020;157:80–9.

[121]

Jin X, Wang J, Dai L, Liu X, Li L, Yang Y, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. J Chem Eng 2020;380:122475.

[122]

Luo J-Q, Zhao S, Zhang H-B, Deng Z, Li L, Yu Z-Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos Sci Technol 2019;182:107754.

[123]

Yao W, He S, Xue Y, Zhang Q, Wang J, He M, et al. V2CT MXene artificial solid electrolyte interphases toward dendrite-free lithium metal anodes. ACS Sustainable Chem Eng 2021;9(29):9961–9.

[124]

Liu Z, Zhao S, Li G, Chen C, Xie X, Wu Z, et al. Stabilizing BiOCl/Ti3C2T hybrids for potassium-ion batteries via solid electrolyte interphase reconstruction. Inorg Chem Front 2022;9(13):3165–75.

[125]

Zhao S, Liu Z, Xie G, Guo X, Guo Z, Song F, et al. Achieving High-performance 3D K+-pre-intercalated Ti3C2T MXene for potassium-ion hybrid capacitors via regulating electrolyte solvation structure. Angew Chem Int Ed 2021;60(50):26246–53.

[126]
Yang H, Zhang G-X, Zhou H-J, Sun Y-Y, Pang H. Energy Mater Adv 2023;4.0033.
[127]

Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 2012;134(40):16909–16.

[128]

Huang L, Li T, Liu Q, Gu J. Fluorine-free Ti3C2T as anode materials for Li-ion batteries. Electrochem Commun 2019;104:106472.

[129]

Chen C, Boota M, Xie X, Zhao M, Anasori B, Ren CE, et al. Charge transfer induced polymerization of EDOT confined between 2D titanium carbide layers. J Mater Chem 2017;5(11):5260–5.

[130]

Fang Y, Xiao L, Chen Z, Ai X, Cao Y, Yang H. Recent advances in sodium-ion battery materials. Electrochem Energy Rev 2018;1(3):294–323.

[131]

Song F, Hu J, Li G, Wang J, Chen S, Xie X, et al. Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett 2022;14(1):37.

[132]

Lian S, Li G, Song F, Liu Z, Hu J, Tang K, et al. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium-and potassium-ion storage. J Alloys Compd 2022;901:163426.

[133]

Li G, Lian S, Song F, Chen S, Wu Z, Xie X, et al. Surface chemistry and mesopore dual regulation by sulfur-promised high volumetric capacity of Ti3C2T films for sodium-ion Storage. Small 2021;17(49):2103626.

[134]

Zhou G, Pei S, Li L, Wang D-W, Wang S, Huang K, et al. A graphene–pure-sulfur sandwich sructure for ultrafast, long-life lithium–sulfur batteries. Adv Mater 2014;26(4):625–31.

[135]

Kang N, Lin Y, Yang L, Lu D, Xiao J, Qi Y, et al. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nat Commun 2019;10(1):4597.

[136]

Peng H-J, Huang J-Q, Cheng X-B, Zhang Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater 2017;7(24):1700260.

[137]

Peng H-J, Zhang Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew Chem Int Ed 2015;54(38):11018–20.

[138]

Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow Carbon Nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 2011;11(10):4462–7.

[139]

Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 2016;1(6):16023.

[140]

Song J, Su D, Xie X, Guo X, Bao W, Shao G, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium–sulfur batteries. ACS Appl Mater Interfaces 2016;8(43):29427–33.

[141]

Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem Int Ed 2015;127(13):3979–83.

[142]

Zhao Y, Zhao J. Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Appl Surf Sci 2017;412:591–8.

[143]

Xiao Z, Li Z, Meng X, Wang R. MXene-engineered lithium–sulfur batteries. J Mater Chem 2019;7(40):22730–43.

[144]

Ye C, Jiao Y, Chao D, Ling T, Shan J, Zhang B, et al. Electron-state confinement of polysulfides for highly stable sodium–sulfur batteries. Adv Mater 2020;32(12):1907557.

[145]

Yue J, Han F, Fan X, Zhu X, Ma Z, Yang J, et al. High-performance all-inorganic solid-state sodium–sulfur battery. ACS Nano 2017;11(5):4885–91.

[146]

Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, et al. A stable room-temperature sodium–sulfur battery. Nat Commun 2016;7(1):11722.

[147]

Xu X, Zhou D, Qin X, Lin K, Kang F, Li B, et al. A room-temperature sodium–sulfur battery with high capacity and stable cycling performance. Nat Commun 2018;9(1):3870.

[148]

Gao C, Gu Y, Zhao Y, Qu L. Recent development of integrated systems of microsupercapacitors. Energy Mater Adv 2022;2022:9804891.

[149]

Wu X, Huang B, Wang Q, Wang Y. Wide potential and high energy density for an asymmetric aqueous supercapacitor. J Mater Chem 2019;7(32):19017–25.

[150]

Ghaffari M, Zhou Y, Xu H, Lin M, Kim TY, Ruoff RS, et al. Retracted: high-volumetric performance aligned aano-porous microwave exfoliated graphite oxide-based electrochemical capacitors. Adv Mater 2013;25(35):4879–85.

[151]

Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, et al. Cation Intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341(6153):1502.

[152]

Zhu M, Huang Y, Deng Q, Zhou J, Pei Z, Xue Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 2016;6(21):1600969.

[153]

Peng L, Yu C, Ma Y, Xie G, Xie X, Wu Z, et al. Self-assembled transition metal chalcogenides@ CoAl-LDH 2D/2D heterostructures with enhanced photoactivity for hydrogen evolution. Inorg Chem Front 2022;9(5):994–1005.

[154]

Zhou M, Bao S, Bard AJ. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J Am Chem Soc 2019;141(18):7327–32.

[155]

Sui X, Zhang L, Li J, Doyle-Davis K, Li R, Wang Z, et al. Enhancing metal–support interaction by in situ ion-exchanging strategy for high performance Pt catalysts in hydrogen evolution reaction. J Mater Chem 2020;8(32):16582–9.

[156]

Wei Y, Soomro RA, Xie X, Xu B. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. J Energy Chem 2021;55:244–55.

[157]

Liu A, Liang X, Ren X, Guan W, Gao M, Yang Y, et al. Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv Funct Mater 2020;30(38):2003437.

[158]

Xie G, Han C, Song F, Zhu Y, Wang X, Wang J, et al. A study on the role of plasmonic Ti3C2T MXene in enhancing photoredox catalysis. Nanoscale 2022;14(48):18010–21.

[159]

Xie G, Zhu Y, Yu C, Xie X, Zhang N. Engineered charge transfer and reactive site over hierarchical Ti3C2T MXene@ In2S3-NiS toward enhanced photocatalytic H2 evolution. 2D Mater 2022;10(1):014004.

[160]

Handoko AD, Fredrickson KD, Anasori B, Convey KW, Johnson LR, Gogotsi Y, et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl Energy Mater 2017;1(1):173–80.

[161]

Jiang Y, Sun T, Xie X, Jiang W, Li J, Tian B, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019;12(7):1368–73.

[162]

Thangamani G, Deshmukh K, Basheer Ahamed M, Chidambaram K, Saranya KC, Khadeer Pasha S. Facile synthesis of nickel oxide nanoparticles using solvothermal method and their implementation in sensor applications. Int J ChemTech Res 2015;8(5):70–6.

[163]

Deshmukh K, Kovářík T, Khadheer Pasha SK. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord Chem Rev 2020;424:213514.

[164]

Xin M, Li J, Ma Z, Pan L, Shi Y. MXenes and their applications in wearable sensors. Front Chem 2020;8:297.

[165]

Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 2018;47(14):5109–24.

[166]

Hajian S, Khakbaz P, Moshayedi M, Maddipatla D, Narakathu BB, Turkani VS, et al. Impact of different ratios of fluorine, oxygen, and hydroxyl surface terminations on Ti3C2Tx MXene as ammonia sensor: a first-principles study. 2018 IEEE Sensors 2018:1–4.

[167]

Kim SJ, Koh H-J, Ren CE, Kwon O, Maleski K, Cho S-Y, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018;12(2):986–93.

[168]

Lee E, VahidMohammadi A, Prorok BC, Yoon YS, Beidaghi M, Kim D-J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces 2017;9(42):37184–90.

[169]

Cao M-S, Cai Y-Z, He P, Shu J-C, Cao W-Q, Yuan J. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. J Chem Eng 2019;359:1265–302.

[170]

Iqbal A, Sambyal P, Koo CM. 2D MXenes for electromagnetic shielding: a review. Adv Funct Mater 2020;30(47):2000883.

[171]

Geetha S, Satheesh Kumar K, Rao CR, Vijayan M, Trivedi D. EMI shielding: methods and materials—a review. J Appl Polym Sci 2009;112(4):2073–86.

[172]

Yun T, Kim H, Iqbal A, Cho YS, Lee GS, Kim M-K, et al. Electromagnetic shielding of monolayer MXene assemblies. Adv Mater 2020;32(9):1906769.

[173]

Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man Hong S, Koo CM, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016;353(6304):1137.

[174]

Ji B, Fan S, Ma X, Hu K, Wang L, Luan C, et al. Electromagnetic shielding behavior of heat-treated Ti3C2T MXene accompanied by structural and phase changes. Carbon 2020;165:150–62.

[175]

Liu J, Zhang H-B, Sun R, Liu Y, Liu Z, Zhou A, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater 2017;29(38):1702367.

[176]

Bian R, He G, Zhi W, Xiang S, Wang T, Cai D. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J Mater Chem C 2019;7(3):474–8.

[177]

Zhou Z, Liu J, Zhang X, Tian D, Zhan Z, Lu C. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv Mater Interfac 2019;6(6):1802040.

[178]

Cao WT, Chen FF, Zhu YJ, Zhang YG, Jiang YY, Ma MG, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018;12(5):4583–93.

[179]

Xu H, Yin X, Li X, Li M, Liang S, Zhang L, et al. Lightweight Ti2CT MXene/Poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interfaces 2019;11(10):10198–207.

[180]

Liu R, Miao M, Li Y, Zhang J, Cao S, Feng X. Ultrathin biomimetic polymeric Ti3C2T MXene composite films for electromagnetic interference shielding. ACS Appl Mater Interfaces 2018;10(51):44787–95.

[181]

Zhang Z, Cai Z, Zhang Y, Peng Y, Wang Z, Xia L, et al. The recent progress of MXene-Based microwave absorption materials. Carbon 2021;174:484–99.

[182]

Han M, Yin X, Wu H, Hou Z, Song C, Li X, et al. Ti3C2 MXenes with modified surface for high-Performance electromagnetic absorption and shielding in the X-Band. ACS Appl Mater Interfaces 2016;8(32):21011–9.

[183]

Tong Y, He M, Zhou Y, Zhong X, Fan L, Huang T, et al. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2T toward high-performance electromagnetic wave absorption. Appl Surf Sci 2018;434:283–93.

[184]

Wei H, Dong J, Fang X, Zheng W, Sun Y, Qian Y, et al. Ti3C2T MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol 2019;169:52–9.

[185]

Li Y, Gao Y, Fan B, Guan L, Zhao B, Zhang R. Tailoring microwave electromagnetic responses in Ti3C2T MXene with Fe3O4 nanoparticle decoration via a solvothermal method. J Phys Chem C 2021;125(36):19914–24.

[186]

Yang W, Liu J-J, Wang L-L, Wang W, Yuen ACY, Peng S, et al. Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Compos B Eng 2020;188:107875.

[187]

Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem 2014;2(35):14334–8.

[188]

Li X, Yin X, Han M, Song C, Sun X, Xu H, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CT MXene. J Mater Chem C 2017;5(30):7621–8.

[189]

Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001;39(2):279–85.

[190]

Wu X, Han B, Zhang H-B, Xie X, Tu T, Zhang Y, et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. J Chem Eng 2020;381:122622.

[191]

Sun R, Zhang H-B, Liu J, Xie X, Yang R, Li Y, et al. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv Funct Mater 2017;27(45):1702807.

[192]

Wang L, Chen L, Song P, Liang C, Lu Y, Qiu H, et al. Fabrication on the annealed Ti3C2T MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos B Eng 2019;171:111–8.

Journal of Materiomics
Pages 1160-1184
Cite this article:
Li G, Lian S, Wang J, et al. Surface chemistry engineering and the applications of MXenes. Journal of Materiomics, 2023, 9(6): 1160-1184. https://doi.org/10.1016/j.jmat.2023.08.003

123

Views

5

Crossref

5

Web of Science

5

Scopus

Altmetrics

Received: 04 July 2023
Revised: 10 August 2023
Accepted: 12 August 2023
Published: 04 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return