AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Three-dimensional crosslinked nanoarchitectonics of CoP@NC anchored on Ti3C2Tx with high ionic diffusion and enhanced sodium storage performance

Zhihao GuJiabao Li( )Penghao SongYu WangJian YangTianyi Wang( )Chengyin Wang( )
School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, Jiangsu, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Transition metal phosphides (CoP, etc.), featuring rich natural abundance and remarkable theoretical capacity, suffer from extremely poor rate capability and severe energy decay for sodium storage due to their huge volume change and low electronic conductivity. Herein, an elaborate hierarchical superstructure, nitrogen-doped carbon wrapped CoP in-situ anchored on Ti3C2T MXene (CoP@NC/Ti3C2T), was fabricated by crosslinking ZIF-67 on Ti3C2T flakes followed by successive carbonization and phosphorization. In principle, the dual modification for CoP nanoparticles through NC coating and Ti3C2T support can dramatically accelerate the ionic/electronic transportation and alleviate the structure change upon repeated sodiation/desodiation, thus leading to superior electrode integrity, modified ohmic polarization, and excellent electrochemical reversibility. Consequently, the elaborated hierarchical superstructure delivers impressive sodium storage performances with large capacity (396.06 mA·h/g at 0.1 A/g up to 100 cycles), robust rate performance (237.8 mA·h/g at 2.0 A/g), and satisfied cyclability (capacity retention of 81.3% at 1.0 A/g after 1,200 cycles). In principle, systematic electrochemical and characterizations measurements manifest that the high pseudocapacitive effect to charge storage, enhanced ionic diffusion kinetics, and remarkable electrochemical reversibility contribute to the impressive sodium storage performance of target CoP@NC/Ti3C2T. Importantly, the unique modification strategy reported in this study paves a way to fabricate high-performance electrode for SIBs.

References

[1]

Xiao S, Li X, Zhang W, Xiang Y, Li T, Niu X, et al. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021;15(8):13307–18.

[2]

Chi X, Li M, Di J, Bai P, Song L, Wang X, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021;592:551–7.

[3]

Wang X, Xiao R, Li H, Chen L. Quantitative structure-property relationship study of cathode volume changes in lithium ion batteries using ab-initio and partial least squares analysis. J. Materiomics 2017;3(3):178–83.

[4]

Zhang L, Li X, Yang M, Chen W. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater 2021;41:522–45.

[5]

Zhao C, Wang Q, Yao Z, Wang J, Lengeling BS, Ding F, et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020;370:708–11.

[6]

Tian H, Xin F, Wang X, He W, Han W. High capacity group-Ⅳ elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Materiomics 2015;1(3):153–69.

[7]

Rajagopalan R, Zhang Z, Tang Y, Jia C, Ji X, Wang H. Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials. Energy Storage Mater 2021;34:171–93.

[8]

Li J, Tang S, Li Z, Hao J, Wang T, Pan L, et al. Modified reaction kinetics in ester-based electrolyte to boost sodium storage performance: a case study of MoS2/Ti3C2T hybrid. Inorg Chem Front 2023;10:1357–68.

[9]

Zhang X, Li J, Li J, Han L, Lu T, Zhang X, et al. 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chem Eng J 2020;385:123394.

[10]

Wang Z, Feng X, Bai Y, Yang H, Dong R, Wang X, et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv Energy Mater 2021;11:2003854.

[11]

Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, et al. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 2015;6:6929.

[12]

Li X, Xiao S, Niu X, Chen JS, Yu Y. Efficient stress dissipation in well-aligned pyramidal SbSn alloy nanoarrays for robust sodium storage. Adv Funct Mater 2021;31:2104798.

[13]

Wu J, Liu S, Rehman Y, Huang T, Zhao J, Gu Q, et al. Phase engineering of nickel sulfides to boost sodium- and potassium-ion storage performance. Adv Funct Mater 2021;31:2010832.

[14]

Zeng T, He H, Guan H, Yuan R, Liu X, Zhang C. Tunable hollow nanoreactors for in situ synthesis of GeP electrodes towards high-performance sodium ion batteries. Angew Chem Int Ed 2021;60:12103–8.

[15]

Yuan G, Liu D, Feng X, Shao M, Hao Z, Sun T, et al. In situ fabrication of porous CoP hierarchical nanostructures on carbon fiber cloth with exceptional performance for sodium storage. Adv Mater 2022;34:2108985.

[16]

Gong Y, Li Y, Li Y, Liu M, Bai Y, Wu C. Metal selenides anode materials for sodium ion batteries: synthesis, modification, and application. Small 2022;19:2206194.

[17]

Zhang Z, Wang R, Zeng J, Shi K, Zhu C, Yan X. Size effects in sodium ion batteries. Adv Funct Mater 2021;31:2106047.

[18]

Ye F, Lu D, Gui X, Wang T, Zhuang X, Luo W, et al. Atomic layer deposition of core-shell structured V2O5@CNT sponge as cathode for potassium ion batteries. J. Materiomics 2019;5(3):344–9.

[19]

Weng C, Huang S, Lu T, Li J, Li J, L J, et al. NiM(Sb, Sn)/N-doped hollow carbon tube as high-rate and high-capacity anode for lithium-ion batteries. J Colloid Interface Sci 2023;652:208–17.

[20]

Liu Q, Hu Z, Liang Y, Li L, Zou C, Jin H, et al. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem Int Ed 2020;59(13):5159–64.

[21]

Yan D, Yang HY, Bai Y. Tactics to optimize conversion-type metal fluoride/sulfide/oxide cathodes towards advanced lithium metal batteries. Nano Res 2023;16:8173–90.

[22]

Huang W, Shang GH, Zheng X, Engelbrekt C, Yang Y, Li S, et al. Three-dimensional hollow nitrogen-doped carbon shells enclosed monodisperse CoP nanoparticles for long cycle-life sodium storage. Electrochim Acta 2021;395:139112.

[23]

Li J, Tang S, Li Z, Wang C, Li J, Li X, et al. Cross-linking Nanoarchitectonics of nitrogen-doped carbon/MoS2 nanosheets/Ti3C2T MXene hybrids for highly reversible sodium storage. ChemSusChem 2021;14(23):5293–303.

[24]

Huang P, Ying H, Zhang S, Zhang Z, Han W, et al. Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chem Eng J 2022;429:132396.

[25]

Cao J, Li J, Li D, Yuan Z, Zhang Y, Shulga V, et al. Strongly coupled 2D transition metal chalcogenide-MXene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett 2021;13(1):113.

[26]

Cao B, Liu H, Zhang X, Zhang P, Zhu Q, Du H, et al. MOF-derived ZnS nanodots/Ti3C2T MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett 2021;13(1):202.

[27]

Tao S, Xu J, Xie T, Chu S, Wu D, Qian B, et al. Regulating the electronic structure of CoP nanoflowers by molybdenum incorporation for enhanced lithium and sodium storage. J Power Sources 2021;500:229975.

[28]

Wang C, Yan J, Li T, Lv Z, Hou X, Tang Y, et al. A coral-like FeP@NC anode with increasing cycle capacity for sodium-ion and lithium-ion batteries induced by particle refinement. Angew Chem Int Ed 2021;60(47):25013–9.

[29]

Guo Q, Shao H, Zhang K, Chen G, Kong W, Feng X, et al. CoP nanoparticles intertwined with graphene nanosheets as a superior anode for half/full sodium-ion batteries. Chemelectrochem 2021;8(11):2022–7.

[30]

Li J, Li Z, Tang S, Hao J, Wang T, Wang C, et al. Improving the sodium storage performance of carbonaceous anode: synergistic coupling of pore structure and ordered domain engineering. Carbon 2023;203:469–78.

[31]

Wu Y, Zhong W, Yang Q, Hao C, Li Q, Xu M, et al. Flexible MXene-Ti3C2T bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage. Chem Eng J 2022;427:130960.

[32]

Li J, Ding Z, Pan L, Li J, Wang C, Wang G. Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon 2021;173:31–40.

[33]

Li J, Li Z, Tang S, Wang T, Wang K, Pan L, et al. Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J Colloid Interface Sci 2023;629:121–32.

[34]

Li J, Li J, Ding Z, Zhang X, Li Y, Lu T, et al. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage. Chem Eng J 2019;378:122108.

[35]

Yang Y, Wang L, Zeng S, Zhao K, Wu Q, Yan L, et al. FeP coated in nitrogen/phosphorus Co-doped carbon shell nanorods arrays as high-rate capable flexible anode for K-ion half/full batteries. J Colloid Interface Sci 2022;624:670–9.

[36]

Zhang Y, Li J, Li H, Shi H, Gong Z, Lu T, et al. Facile self-assembly of carbon-free vanadium sulfide nanosheet for stable and high-rate lithium-ion storage. J Colloid Interface Sci 2022;607:145–52.

[37]

Peng Q, Lu Y, Qi S, Liang M, Xu D, Sun W, et al. Pomegranate-inspired nitrogen-doped carbon-coated bimetallic sulfides as a high-performance anode of sodium-ion batteries and their structural evolution analysis. ACS Appl Energy Mater 2022;5(3):3199–207.

[38]

Li H, Wang X, Zhao Z, Pathak R, Hao S, Qiu X, et al. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage. J Mater Sci Technol 2022;99:184–92.

[39]

Jiang Y, Xie M, Wu F, Ye Z, Zhou Y, Li L, et al. Metal-organic framework derived cobalt phosphide nanoparticles encapsulated within hierarchical hollow carbon superstructure for stable sodium storage. Chem Eng J 2022;438:134279.

[40]

Chen W, Zhang X, Mi L, Liu C, Zhang J, Cui S, et al. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. Adv Mater 2019;31(8):1806664.

[41]

Su H, Zhang Y, Liu X, Fu F, Ma J, Li K, et al. Construction of CoP@C embedded into N/S-co-doped porous carbon sheets for superior lithium and sodium storage. J Colloid Interface Sci 2021;582:969–76.

[42]

Zhou P, An Q, Zhu S, Owusu KA, Li Q, Ma L. Self-adaptive FeP@C nanocages for reversible and long-term lithium-ion batteries. Chem Eng J 2020;395:125124.

[43]

Zheng Z, Wu HH, Liu H, Zhang Q, He X, Yu S, et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 2020;14(8):9545–61.

[44]

Li J, Yan D, Lu T, Yao Y, Pan L. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J 2017;325:14–24.

[45]

Li J, Yan D, Hou S, Lu T, Yao Y, Chua DHC, et al. Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chem Eng J 2018;335:579–89.

[46]

Zhang X, Zhu G, Wang M, Li J, Lu T, Pan L, et al. Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. Carbon 2017;116:686–94.

[55]

Li J, Ding Z, Li J, Wang C, Pan L, Wang G. Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem Eng J 2021;407:127199.

[56]

Sun H, Li J, Wang W, Wang Z, Pan L. Facile in-situ synthesis of heazlewoodite on nitrogen-doped reduced graphene oxide for enhanced sodium storage. J Colloid Interface Sci 2021;594:35–46.

[57]

Ding Z, Xu X, Li J, Li Y, Wang K, Lu T, et al. Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chem Eng J 2022;430:133161.

[58]

Wu H, Xu N, Jiang Z, Zheng A, Shi Q, Lv R, et al. Space and interface confinement effect of necklace-box structural FeS2/WS2 carbon nanofibers to enhance Na+ storage performance and electrochemical kinetics. Chem Eng J 2022;427:131002.

[59]

Chen S, Huang S, Hu J, Fan S, Shang Y, Pam ME, et al. Boosting sodium storage of FeS/MoS2 composite via heterointerface engineering. Nano-Micro Lett 2019;11(1):80.

[60]

Li J, Tang S, Li Z, Wang C, Pan L. Boosting the lithium storage performance by synergistically coupling ultrafine heazlewoodite nanoparticle with N, S co-doped carbon. J Colloid Interface Sci 2021;604:368–77.

[61]

Ye F, Lu D, Gui X, Wang T, Zhuang X, Luo W, et al. Atomic layer deposition of core-shell structured V2O5@CNT sponge as cathode for potassium ion batteries. J. Materiomics 2019;5(3):344–9.

[62]

Li H, He Y, Dai Y, Ren Y, Gao T, Zhou G. Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem Eng J 2022;427:131784.

[63]

Yang J, Li J, Wang T, Notten PHL, Ma H, Liu Z, et al. Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem Eng J 2021;407:127169.

Journal of Materiomics
Pages 1185-1195
Cite this article:
Gu Z, Li J, Song P, et al. Three-dimensional crosslinked nanoarchitectonics of CoP@NC anchored on Ti3C2Tx with high ionic diffusion and enhanced sodium storage performance. Journal of Materiomics, 2023, 9(6): 1185-1195. https://doi.org/10.1016/j.jmat.2023.08.005

183

Views

4

Crossref

3

Web of Science

2

Scopus

Altmetrics

Received: 02 June 2023
Revised: 22 August 2023
Accepted: 22 August 2023
Published: 14 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return