AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Modulation of internal electric field engineering of bifunctional multi-interfacial heterojunction photocatalysts for photocatalytic H2 and H2O2 production

Huihui GaoPenghui ZhangHongjie QinShouwei Zhang( )Jinghua Guo( )
School of Physics and Technology, University of Jinan, Jinan, 250022, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The purposeful construction of dual Z-scheme system to the formation of intimate interface contact and multi-channel charge flow through the system remains a huge challenge. Herein, a tandem 2D/0D/2D g-C3N4 nanosheets/FeOOH quantum dots/ZnIn2S4 nanosheets (CNFeZn) dual Z-scheme system (DZSS) has been successfully constructed using electrostatic self-assembly method. Owing to the band structure and elaborate morphology of 2D g-C3N4, 0D FeOOH and 2D ZnIn2S4 in unique designed DZSS, plenty of spatial charge transfer channels are formed between the g-C3N4/FeOOH and FeOOH/ZnIn2S4 interfaces, which greatly accelerate the charge separation and transfer. As bifunctional catalysts, CNFeZn DZSS achieves the highest H2 evolution rate of ~436.6 μmol/h with a great promotion of ~10.6 folds and ~6.9 folds compared to pristine g-C3N4 and ZnIn2S4, respectively. Meanwhile, the H2O2 production rate reached ~301.19 μmol/L after 60 min irradiation, up to ~5.1 times and ~2.3 times that of pristine g-C3N4 and ZnIn2S4. Experiment and DFT calculation further confirmed that the stable double built-in electronic field can be formed owing to the electron configuration between double interfaces, and reveal that the ample atomic-level charge transfer channels were established in the strong interaction connected double interfaces, which can act as the charge migration pathway promote the separation of photogenerated charges.

References

[1]

Shen R, Zhang L, Li N, Lou Z, Ma T, Zhang P, et al. W–N Bonds precisely boost Z-Scheme interfacial charge transfer in g-C3N4/WO3 heterojunctions for enhanced photocatalytic H2 evolution. ACS Catal 2022;12(16):9994–10003.

[2]

Xu H, She X, Fei T, Song Y, Liu D, Li H, et al. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution. ACS Nano 2019;13(10):11294–302.

[3]

Zhang S, Guo J, Zhang W, Gao H, Huang J, Chen G, et al. Dopant and defect doubly modified CeO2/g-C3N4 nanosheets as 0D/2D Z-Scheme heterojunctions for photocatalytic hydrogen evolution: experimental and density functional theory studies. ACS Sustainable Chem Eng 2021;9(34):11479–92.

[4]

Lei Z, Cao X, Fan J, Hu X, Hu J, Li N, et al. Efficient photocatalytic H2 generation over In2.77S4/NiS2/g-C3N4 S-scheme heterojunction using NiS2 as electron-bridge. Chem Eng J 2023;457:141249.

[5]

Lin S, Zhang N, Wang F, Lei J, Zhou L, Liu Y, et al. Carbon vacancy mediated incorporation of Ti3C2 quantum dots in a 3D inverse opal g-C3N4 Schottky junction catalyst for photocatalytic H2O2 production. ACS Sustainable Chem Eng 2021;9(1):481–8.

[6]

Lee JH, Cho H, Park SO, Hwang JM, Hong Y, Sharma P, et al. High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Appl Catal B Environ 2021;284:119690.

[7]

Yang Y, Zeng Z, Zeng G, Huang D, Xiao R, Zhang C, et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl Catal B Environ 2019;258:117956.

[8]

Zhang E, Zhu Q, Huang J, Liu J, Tan G, Sun C, et al. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Appl Catal B Environ 2021;293:120213.

[9]

Xu J, Ji Q, Wang Y, Wang C, Wang L. Enhanced photocatalytic H2/H2O2 production and tetracycline degradation performance of CdSe quantum dots supported on K, P, N-co-doped hollow carbon polyhedrons. Chem Eng J 2021;426:130808.

[10]

Yu W, Hu C, Bai L, Tian N, Zhang Y, Huang H. Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy 2022;104:107906.

[11]

Li Y, Zhou M, Cheng B, Shao Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J Mater Sci Technol 2020;56:1–17.

[12]

Lin B, Xia M, Xu B, Chong B, Chen Z, Yang G. Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chin J Catal 2022;43(8):2141–72.

[13]

Li B, Peng W, Zhang J, Lian J-C, Huang T, Cheng N, et al. High-throughput one-photon excitation pathway in 0D/3D heterojunctions for visible-light driven hydrogen evolution. Adv Funct Mater 2021;31(18):2100816.

[14]

Wang G, Chen Z, Wang T, Wang D, Mao J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew Chem, Int Ed 2022;61(40):e202210789.

[15]

Teixeira IF, Barbosa ECM, Tsang SCE, Camargo PHC. Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis. Chem Soc Rev 2018;47(20):7783–817.

[16]

Ling GZS, Ng S-F, Ong W-J. Tailor-engineered 2D cocatalysts: harnessing Electron–Hole Redox Center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv Funct Mater 2022;32(29):2111875.

[17]

Zheng J, Zhang L. Designing 3D magnetic peony flower-like cobalt oxides/g-C3N4 dual Z-scheme photocatalyst for remarkably enhanced sunlight driven photocatalytic redox activity. Chem Eng J 2019;369:947–56.

[18]

Wang Y, Liu M, Wu C, Gao J, Li M, Xing Z, et al. Hollow nanoboxes Cu2-xS@ZnIn2S4 core-shell S-Scheme heterojunction with broad-spectrum response and enhanced photothermal-photocatalytic performance. Small 2022;18(31):2202544.

[19]

Wu B, Zhang L, Jiang B, Li Q, Tian C, Xie Y, et al. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew Chem, Int Ed 2021;60(9):4815–22.

[20]

Tan X-Q, Ng S-F, Mohamed AR, Ong W-J. Point-to-face contact heterojunctions: interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications. Carbon Energy 2022;4(5):665–730.

[21]

Shi M, Xiao P, Lang J, Yan C, Yan X. Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv Sci 2019:1901975.

[22]

Zhao F, Feng Y, Wang Y, Zhang X, Liang X, Li Z, et al. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat Commun 2020;11(1):1443.

[23]

Zhang M, Lai C, Li B, Huang D, Zeng G, Xu P, et al. Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight. J Catal 2019;369:469–81.

[24]

Wang L, Yang T, Peng L, Zhang Q, She X, Tang H, et al. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chin J Catal 2022;43(10):2720–31.

[25]

Jiang R, Mao L, Zhao Y, Zhang J, Chubenko EB, Bondarenko V, et al. 1D/2D CeO2/ZnIn2S4 Z-scheme heterojunction photocatalysts for efficient H2 evolution under visible light. Sci China Mater 2023;66:139–49.

[26]

Yang Y, Xing Z, Kong W, Wu C, Peng H, Li Z, et al. Metal–organic framework (MOF)-5/CuO@ZnIn2S4 core–shell Z-scheme tandem heterojunctions for improved charge separation and enhanced photocatalytic performance. Nanoscale 2022;14(39):14741–9.

[27]

Du M, Li L, Ji S, Wang T, Wang Y, Zhang J, Xa Li. In situ growth of 2D ZnIn2S4 nanosheets on sulfur-doped porous Ti3C2Tx MXene 3D multi-functional architectures for photocatalytic H2 evolution. J Mater Chem C 2022;10(29):10636–44.

[28]

Hu J, Chen C, Zheng Y, Zhang G, Guo C, Li CM. Spatially separating redox centers on Z-Scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly efficient photocatalytic hydrogen evolution. Small 2020;16(37):2002988.

[29]

Du C, Yan B, Yang G. Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation. Nano Energy 2020;76:105031.

[30]

Zhu B, Cheng B, Fan J, Ho W, Yu J. g-C3N4-Based 2D/2D composite heterojunction photocatalyst. Small Struct 2021;2(12):2100086.

[31]

Liu X, Zhang Q, Ma D. Advances in 2D/2D Z-Scheme heterojunctions for photocatalytic applications. Sol RRL 2021;5(2):2000397.

[32]

Lin B, Chen H, Zhou Y, Luo X, Tian D, Yan X, et al. 2D/2D atomic double-layer WS2/Nb2O5 shell/core nanosheets with ultrafast interfacial charge transfer for boosting photocatalytic H2 evolution. Chin Chem Lett 2021;32(10):3128–32.

[33]

Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, et al. Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew Chem, Int Ed 2019;58(7):2073–7.

[34]

Lin B, Chen Z, Song P, Liu H, Kang L, Di J, et al. A tandem 0D/2D/2D NbS2 quantum dot/Nb2O5 nanosheet/g-C3N4 flake system with spatial charge-transfer cascades for boosting photocatalytic hydrogen evolution. Small 2020;16(42):2003302.

[35]

Li J, Zhan G, Yu Y, Zhang L. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat Commun 2016;7(1):11480.

[36]

Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. A hierarchical Z-Scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater 2018;30(10):1706108.

[37]

Wang J, Xu L, Wang T, Li R, Zhang Y, Zhang J, et al. Porphyrin conjugated polymer grafted onto BiVO4 nanosheets for efficient Z-Scheme overall water splitting via cascade charge transfer and single-atom catalytic sites. Adv Energy Mater 2021;11(7):2003575.

[38]

Deng X, Hui W, Guan Y, Zhang Y, Zhao T, Guo C, et al. A nanoreactor with Z-scheme FeS2/MoS2 heterojunctions encapsulated inside the carbon capsule: insight on preparation method and enhanced performance in photo-Fenton reaction. Chem Eng J 2022;450:138221.

[39]

Wu C, Xing Z, Fang B, Cui Y, Li Z, Zhou W. Polyoxometalate-based yolk@shell dual Z-scheme superstructure tandem heterojunction nanoreactors: encapsulation and confinement effects. J Mater Chem A 2022;10(1):180–91.

[40]

Chen J, Shen Z, Lv S, Shen K, Wu R, Jiang X-f, et al. Fabricating sandwich-shelled ZnCdS/ZnO/ZnCdS dodecahedral cages with “one stone” as Z-scheme photocatalysts for highly efficient hydrogen production. J Mater Chem A 2018;6(40):19631–42.

[41]

Xiong S, Zeng H, Deng Y, Feng C, Tang R, Zhou Z, et al. Insights into the dual Z-scheme and piezoelectricity co-driven photocatalyst for ultra-speed degradation of nitenpyram. Chem Eng J 2023;451:138399.

[42]

Wang X, Hai G, Li B, Luan Q, Dong W, Wang G. Construction of dual-Z-scheme WS2-WO3·H2O/g-C3N4 catalyst for photocatalytic H2 evolution under visible light. Chem Eng J 2021;426:130822.

[43]

Saravanakumar K, Park CM. Rational design of a novel LaFeO3/g-C3N4/BiFeO3 double Z-scheme structure: photocatalytic performance for antibiotic degradation and mechanistic insight. Chem Eng J 2021;423:130076.

[44]

Tian L, Yang X, Cui X, Liu Q, Tang H. Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance. Appl Surf Sci 2019;463:9–17.

[45]

Li L, Guo C, Ning J, Zhong Y, Chen D, Hu Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl Catal B Environ 2021;293:120203.

[46]

Huang S, Zhang Q, Liu P, Ma S, Xie B, Yang K, et al. Novel up-conversion carbon quantum dots/α-FeOOH nanohybrids eliminate tetracycline and its related drug resistance in visible-light responsive Fenton system. Appl Catal B Environ 2020;263:118336.

[47]

Huang Y, Gao Y, Zhang Q, Zhang Y, Cao J-j, Ho W, et al. Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NOx removal under visible light: improved charge separation and High selectivity. J Hazard Mater 2018;354:54–62.

[48]

Zhang W, Zhao S, Xing Y, Qin H, Zheng Q, Zhang P, et al. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution. Chem Eng J 2022;442:136151.

[49]

Yang M-Q, Xu Y-J, Lu W, Zeng K, Zhu H, Xu Q-H, et al. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat Commun 2017;8(1):14224.

[50]

Zhang S, Gao H, Huang Y, Wang X, Hayat T, Li J, et al. Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation. Environ Sci Nano 2018;5(5):1179–90.

[51]

Gao H, Yang H, Xu J, Zhang S, Li J. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation. Small 2018;14(31):1801353.

[52]

Zhao K, Wang H, Zhu C, Lin S, Xu Z, Zhang X. Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochim Acta 2019;308:1–8.

[53]

Zeng X, Liu Y, Kang Y, Li Q, Xia Y, Zhu Y, et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal 2020;10(6):3697–706.

[54]

Liu J, Zheng M, Shi X, Zeng H, Xia H. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv Funct Mater 2016;26(6):919–30.

[55]

Yang H, Cao R, Sun P, Yin J, Zhang S, Xu X. Constructing electrostatic self-assembled 2D/2D ultra-thin ZnIn2S4/protonated g-C3N4 heterojunctions for excellent photocatalytic performance under visible light. Appl Catal B Environ 2019;256:117862.

[56]

Lai L, Xing F, Cheng C, Huang C. Hierarchical 0D NiSe2/2D ZnIn2S4 nanosheet-assembled microflowers for enhanced photocatalytic hydrogen evolution. Adv Mater Interfac 2021;8(9):2100052.

[57]

Shao Y, Hu J, Yang T, Yang X, Qu J, Xu Q, et al. Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon 2022;190:337–47.

[58]

Tang H, Wang R, Zhao C, Chen Z, Yang X, Bukhvalov D, et al. Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chem Eng J 2019;374:1064–75.

[59]

Qin Y, Li H, Lu J, Feng Y, Meng F, Ma C, et al. Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl Catal B Environ 2020;277:119254.

[60]

Lima LVC, Rodriguez M, Freitas VAA, Souza TE, Machado AEH, Patrocínio AOT, Fabris JD, Oliveira LCA, Pereira MC. Synergism between n-type WO3 and p-type δ-FeOOH semiconductors: high interfacial contacts and enhanced photocatalysis. Appl Catal B Environ 2015;165:579–88.

[61]

Zhu Q, Qiu B, Du M, Ji J, Nasir M, Xing M, et al. Dopant-induced edge and basal plane catalytic sites on ultrathin C3N4 nanosheets for photocatalytic water reduction. ACS Sustainable Chem Eng 2020;8(19):7497–502.

[62]

Hao M, Deng X, Xu L, Li Z. Noble metal Free MoS2/ZnIn2S4 nanocomposite for acceptorless photocatalytic semi-dehydrogenation of 1,2,3,4-tetrahydroisoquinoline to produce 3,4-dihydroisoquinoline. Appl Catal B Environ 2019;252:18–23.

[63]

Zhang S, Liu X, Liu C, Luo S, Wang L, Cai T, et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018;12(1):751–8.

[64]

Guo Y, Ao Y, Wang P, Wang C. Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl Catal B Environ 2019;254:479–90.

[65]

Zhang D, Yang Z, Hao J, Zhang T, Sun Q, Wang Y. Boosted charge transfer in dual Z-scheme BiVO4@ZnIn2S4/Bi2Sn2O7 heterojunctions: towards superior photocatalytic properties for organic pollutant degradation. Chemosphere 2021;276:130226.

[66]

Han Q, Li L, Gao W, Shen Y, Wang L, Zhang Y, et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-Scheme photocatalysts for efficient CO2 photoreduction. ACS Appl Mater Interfaces 2021;13(13):15092–100.

[67]

Gao H, Cao R, Xu X, Zhang S, Yongshun H, Yang H, et al. Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution. Appl Catal B Environ 2019;245:399–409.

[68]

Li Z, Hou J, Zhang B, Cao S, Wu Y, Gao Z, et al. Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting. Nano Energy 2019;59:537–44.

[69]

Xu Y, Fan M, Yang W, Xiao Y, Zeng L, Wu X, et al. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv Mater 2021;33(39):2101455.

[70]

Li L, Shi H, Yu H, Tan X, Wang Y, Ge S, et al. Ultrathin MoSe2 nanosheet anchored CdS-ZnO functional paper chip as a highly efficient tandem Z-scheme heterojunction photoanode for scalable photoelectrochemical water splitting. Appl Catal B Environ 2021;292:120184.

[71]

Wu S, Yu H, Chen S, Quan X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal 2020;10(24):14380–9.

[72]

Liu Y, Liu H, Zhou H, Li T, Zhang L. A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation. Appl Surf Sci 2019;466:133–40.

[73]

Xue W, Sun H, Hu X, Bai X, Fan Jun, Liu E. UV-VIS-NIR-induced extraordinary H2 evolution over W18O49/Cd0.5Zn0.5S: surface plasmon effect coupled with S-scheme charge transfer. Chin J Catal 2022;43:234–45.

Journal of Materiomics
Pages 601-614
Cite this article:
Gao H, Zhang P, Qin H, et al. Modulation of internal electric field engineering of bifunctional multi-interfacial heterojunction photocatalysts for photocatalytic H2 and H2O2 production. Journal of Materiomics, 2024, 10(3): 601-614. https://doi.org/10.1016/j.jmat.2023.08.010

232

Views

12

Crossref

7

Web of Science

9

Scopus

Altmetrics

Received: 23 May 2023
Revised: 28 August 2023
Accepted: 30 August 2023
Published: 24 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return