AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Advancing MXene-based integrated microsystems with micro-supercapacitors and/or sensors: Rational design, key progress, and challenging perspectives

Jin JiaaYuanyuan Zhua,b( )Pratteek Dasb,cJiaxin Mab,cSen WangbGuang ZhuaZhong-Shuai Wub,d,( )
Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The escalating demand for micro/nano-sized devices, such as micro/nano-robots, intelligent portable/wearable microsystems, and implantable medical microdevices, necessitates the expeditious development of integrated microsystems incorporating energy conversion, storage, and consumption. Critical bottlenecks in microscale energy storage/sensors and their integrated systems are being addressed by exploring new technologies and new materials, e.g., MXene, holding great potential for developing lightweight and deformable integrated microdevices. This review summarizes the latest progress and milestones in the realization of MXene-based micro-supercapacitors (MSCs) and sensor arrays, and thus discusses the design fundamentals and key advancements of MXene-based energy conversion-storage-consumption integrated microsystems. Finally, we outline the key challenges in fabricating MXene-based MSCs/sensors and their self-powered integrated microsystems, which is crucial for their practical applications. Particularly, we illuminate viable solutions to such unsolved issues and highlight the exciting opportunities.

References

[1]

Shi Q, Dong B, He T, Sun Z, Zhu J, Zhang Z, et al. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2020;2:1131–62.

[2]

Verma D, Singh KRB, Yadav AK, Nayak V, Singh J, Solanki PR, et al. Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens Bioelectron 2022;11:100153.

[3]

Deng H-T, Wang Z-Y, Wang Y-L, Wen D-L, Zhang X-S. Integrated hybrid sensing and microenergy for compact active microsystems. Microsyst Nanoeng 2022;8:61.

[4]

Wen F, He T, Liu H, Chen H-Y, Zhang T, Lee C. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 2020;78:105155.

[5]

He J, Zhang Y, Zhou R, Meng L, Chen T, Mai W, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J Materiomics 2020;6:86–101.

[6]

Lou Z, Wang L, Jiang K, Wei Z, Shen G. Reviews of wearable healthcare systems: materials, devices and system integration. Mater Sci Eng R Rep 2020;140:100523.

[7]

Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol 2021;18:7–21.

[8]

Fu H, Mei X, Yurchenko D, Zhou S, Theodossiades S, Nakano K, et al. Rotational energy harvesting for self-powered sensing. Joule 2021;5:1074–118.

[9]

Yu J, Chen L, Hou X, Mu J, He J, Geng W, et al. Stretchable and skin-conformal piezo-triboelectric pressure sensor for human joint bending motion monitoring. J Materiomics 2022;8:247–56.

[10]

Qin J, Zhang H, Yang Z, Wang X, Das P, Zhou F, et al. Recent advances and key opportunities on in-plane micro-supercapacitors: from functional microdevices to smart integrated microsystems. J Energy Chem 2023;81:410–31.

[11]

Zhang X-S, Han M, Kim B, Bao J-F, Brugger J, Zhang H. All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 2018;47:410–26.

[12]

Ma J, Zheng S, Das P, Lu P, Yu Y, Wu Z-S. Sodium ion microscale electrochemical energy storage device: present status and future perspective. Small Struct 2020;1:2000053.

[13]

Liu D, Ma J, Zheng S, Shao W, Zhang T, Liu S, et al. High-performance and flexible co-planar integrated microsystem of carbon-based all-solid-state micro-supercapacitor and real-time temperature sensor. Energy Environ Mater 2022:e12445.

[14]

Huang Z, Shao G, Li L. Micro/nano functional devices fabricated by additive manufacturing. Prog Mater Sci 2023;131:101020.

[15]

Ferro LMM, Merces L, Tang H, Karnaushenko DD, Karnaushenko D, Schmidt OG, et al. A dual-function micro-swiss-roll device: high-power supercapacitor and biomolecule probe. Adv Mater Technol 2023:2300053.

[16]

Dong B, Shi Q, Yang Y, Wen F, Zhang Z, Lee C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021;79:105414.

[17]

Chen X, Xiong J, Parida K, Guo M, Wang C, Wang C, et al. Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting. Nano Energy 2019;64:103904.

[18]

Gao M, Wang P, Jiang L, Wang B, Yao Y, Liu S, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114–57.

[19]

Ma L, Zhou M, Wu R, Patil A, Gong H, Zhu S, et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 2020;14:4716–26.

[20]

Yin L, Li Y, Yao X, Wang Y, Jia L, Liu Q, et al. MXenes for solar cells. Nano-Micro Lett 2021;13:78.

[21]

Choi D, Lee Y, Lin Z-H, Cho S, Kim M, Ao CK, et al. Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 2023;17:11087–219.

[22]

Liu D, Zhang J, Cui S, Zhou L, Gao Y, Wang ZL, et al. Recent progress of advanced materials for triboelectric nanogenerators. Small Methods 2023:2300562.

[23]

Yu C, An J, Chen Q, Zhou J, Huang W, Kim Y-J, et al. Recent advances in design of flexible electrodes for miniaturized supercapacitors. Small Methods 2020;4:1900824.

[24]

Li L, Zhang S, Yang Z, Berthold EES, Chen W. Recent advances of flexible perovskite solar cells. J Energy Chem 2018;27:673–89.

[25]

Yang D, Yang R, Priya S, Liu S. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew Chem Int Ed 2019;58:4466–83.

[26]

Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 2019;4:1800628.

[27]

Wu Y, Li Y, Tao Y, Sun L, Yu C. Recent advances in the material design for intelligent wearable devices. Mater Chem Front 2023;7:3278–97.

[28]

Xue B, Sheng H, Li Y, Li L, Di W, Xu Z, et al. Stretchable and self-healable hydrogel artificial skin. Natl Sci Rev 2022;9: nwab147.

[29]

Tian B, Liu Q, Luo C, Feng Y, Wu W. Multifunctional ultrastretchable printed soft electronic devices for wearable applications. Adv Electron Mater 2020;6:1900922.

[30]

Su M, Song Y. Printable smart materials and devices: strategies and applications. Chem Rev 2022;122:5144–64.

[31]

Liu T, Liu L, Gou G-y, Fang Z, Sun J, Chen J, et al. Recent advancements in physiological, biochemical, and multimodal sensors based on flexible substrates: strategies, technologies, and integrations. ACS Appl Mater Interfaces 2023;15:21721–45.

[32]

Liman MLR, Islam MT, Hossain MM. Mapping the progress in flexible electrodes for wearable electronic textiles: materials, durability, and applications. Adv Electron Mater 2022;8:2100578.

[33]

Hassan M, Abbas G, Li N, Afzal A, Haider Z, Ahmed S, et al. Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Adv Mater Technol 2022;7:2100773.

[34]

Zhang C, Li H, Huang A, Zhang Q, Rui K, Lin H, et al. Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 2019;15:1805493.

[35]

Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, et al. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv Sci 2020;7:1902673.

[36]

Su H, Wang X, Li C, Wang Z, Wu Y, Zhang J, et al. Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application. Nano Energy 2021;83:105809.

[37]

Wang Z, Cheng Z, Zhang Y, Yu Y, Zhai X, Zhao Z, et al. Laser printing-based high-resolution metal patterns with customizable design and scalable fabrication of high-performance flexible planar micro energy storage devices. Chem Eng J 2022;429:132512.

[38]

Wang Z, Dong Q, Yan Y, Fang Z, Mi G, Pei M, et al. Al2O3 nanoparticles as surface modifier enables deposition of high quality perovskite films for ultra-flexible photovoltaics. Adv Powder Mater 2023:100142.

[39]

Yousaf M, Shi HTH, Wang Y, Chen Y, Ma Z, Cao A, et al. Novel pliable electrodes for flexible electrochemical energy storage devices: recent progress and challenges. Adv Energy Mater 2016;6:1600490.

[40]

Davoodi E, Fayazfar H, Liravi F, Jabari E, Toyserkani E. Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices. Addit Manuf 2020;32:101016.

[41]

Wang Z, Luan C, Zhu Y, Liao G, Liu J, Li X, et al. Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printing. Nano Energy 2021;90:106534.

[42]

Jinkins KR, Li S, Arafa H, Jeong H, Lee YJ, Wu C, et al. Thermally switchable, crystallizable oil and silicone composite adhesives for skin-interfaced wearable devices. Sci Adv 2022;8:eabo0537.

[43]

Engels H-W, Pirkl H-G, Albers R, Albach RW, Krause J, Hoffmann A, et al. Polyurethanes: versatile materials and sustainable problem solvers for today's challenges. Angew Chem Int Ed 2013;52:9422–41.

[44]

Wen J, Xu B, Gao Y, Li M, Fu H. Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Storage Mater 2021;37:94–122.

[45]

Li Z, Zhang R, Moon K-S, Liu Y, Hansen K, Le T, et al. Highly conductive, flexible, polyurethane-based adhesives for flexible and printed electronics. Adv Funct Mater 2013;23:1459–65.

[46]

Ji D, Li T, Hu W, Fuchs H. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv Mater 2019;31:1806070.

[47]

Yi C, Li W, Shi S, He K, Ma P, Chen M, et al. High-temperature-resistant and colorless polyimide: preparations, properties, and applications. Sol Energy 2020;195:340–54.

[48]

Wan B, Dong X, Yang X, Wang J, Zheng M-S, Dang Z-M, et al. Rising of dynamic polyimide materials: a versatile dielectric for electrical and electronic applications. Adv Mater 2023:2301185.

[49]

Wang H, Li S, Lu H, Zhu M, Liang H, Wu X, et al. Carbon-based flexible devices for comprehensive health monitoring. Small Methods 2023;7:2201340.

[50]

You R, Liu Y-Q, Hao Y-L, Han D-D, Zhang Y-L, You Z. Laser fabrication of graphene-based flexible electronics. Adv Mater 2020;32:1901981.

[51]

Siang Koh W, Moon Lee K, Yi Toh P, Pin Yeap S. Nano-graphene and its derivatives for fabrication of flexible electronic devices: a quick review. Adv Mater Lett 2019;10:676–81.

[52]

Xie P, Yuan W, Liu X, Peng Y, Yin Y, Li Y, et al. Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater 2021;36:56–76.

[53]

Wang Q, Zhou Y, Zhao X, Chen K, Bingni G, Yang T, et al. Tailoring carbon nanomaterials via a molecular scissor. Nano Today 2021;36:101033.

[54]

Zhu Y, Cheng S, Zhou W, Jia J, Yang L, Yao M, et al. Construction and performance characterization of α-Fe2O3/rGO composite for long-cycling-life supercapacitor anode. ACS Sustainable Chem Eng 2017;5:5067–74.

[55]

Meng C, Zhou F, Liu H, Zhu Y, Fu Q, Wu Z-S. Water-in-salt ambipolar redox electrolyte extraordinarily boosting high pseudocapacitive performance of micro-supercapacitors. ACS Energy Lett 2022;7:1706–11.

[56]

Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes – a review. J Materiomics 2016;2:37–54.

[57]
Zhou W, Liu X, Zhou K, Jia J. Carbon materials for supercapacitors. In: Ozoemena KI, Chen S, editors. Nanomaterials in advanced batteries and supercapacitors. Springer International Publishing; 2016. p. 271–315.
[58]

Benzigar MR, Dasireddy VDBC, Guan X, Wu T, Liu G. Advances on emerging materials for flexible supercapacitors: current trends and beyond. Adv Funct Mater 2020;30:2002993.

[59]

Zhu S, Sheng J, Chen Y, Ni J, Li Y. Carbon nanotubes for flexible batteries: recent progress and future perspective. Natl Sci Rev 2021;8:nwaa261.

[60]

Das CM, Kang L, Ouyang Q, Yong K-T. Advanced low-dimensional carbon materials for flexible devices. InfoMat 2020;2:698–714.

[61]

Wei M, Jiang Z, Yang C, Jiang T, Zhang L, Zhao G, et al. A hollow-shaped ZIF-8-N-doped porous carbon fiber for high-performance Zn-ion hybrid supercapacitors. Batteries 2023;9:405.

[62]

Zhu Y, Cheng S, Zhou W, Jia J, Yang L, Yao M, et al. Porous functionalized self-standing carbon fiber paper electrodes for high-performance capacitive energy storage. ACS Appl Mater Interfaces 2017;9:13173–80.

[63]

Li L, Xie F, Wu H, Zhu Y, Zhang P, Li Y, et al. N-doped porous carbon-nanofiber-supported Fe3C/Fe2O3 nanoparticles as anode for high-performance supercapacitors. Molecules 2023;28:5751.

[64]

Wu P, Cheng S, Yang L, Lin Z, Gui X, Ou X, et al. Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl Mater Interfaces 2016;8:23721–8.

[65]

Wu P, Cheng S, Yao M, Yang L, Zhu Y, Liu P, et al. A low-cost, self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors. Adv Funct Mater 2017;27:1702160.

[66]

Tang L, Ji X, Wu P, Luo H, Zhu Y, Deng L, et al. Achievement of high energy carbon based supercapacitors in acid solution enabled by the balance of SSA with abundant micropores and conductivity. Electrochim Acta 2020;353:136562.

[67]

Ahmed A, Sharma S, Adak B, Hossain MM, LaChance AM, Mukhopadhyay S, et al. Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 2022;4:e12295.

[68]

Du T, Han X, Yan X, Shang J, Li Y, Song J. MXene-based flexible sensors: materials, preparation, and applications. Adv Mater Technol 2023;8:2202029.

[69]

Wu Z, Wei L, Tang S, Xiong Y, Qin X, Luo J, et al. Recent progress in Ti3C2T MXene-based flexible pressure sensors. ACS Nano 2021;15:18880–94.

[70]

Hu M, Chen L, Jing Y, Zhu Y, Dai J, Meng A, et al. Intensifying electrochemical activity of Ti3C2T MXene via customized interlayer structure and surface chemistry. Molecules 2023;28:5776.

[71]

Zhu Y, Ji X, Yang L, Jia J, Cheng S, Chen H, et al. Targeted synthesis and reaction mechanism discussion of Mo2C based insertion-type electrodes for advanced pseudocapacitors. J Mater Chem A 2020;8:7819–27.

[72]

Zhang L, Yang G, Chen Z, Liu D, Wang J, Qian Y, et al. MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors. J Materiomics 2020;6:138–44.

[73]

Jiang D, Liu Z, Xiao Z, Qian Z, Sun Y, Zeng Z, et al. Flexible electronics based on 2D transition metal dichalcogenides. J Mater Chem A 2022;10:89–121.

[74]

Yan J, Liu T, Liu X, Yan Y, Huang Y. Metal-organic framework-based materials for flexible supercapacitor application. Coord Chem Rev 2022;452:214300.

[75]

Nguyen T, Montemor M d F. Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices. Adv Sci 2019;6:1801797.

[76]

Zhu Y, Ji X, Cheng S, Jia J, Luo H, Tang L, et al. Achieving durable and fast charge storage of MoO2-based insertion-type pseudocapacitive electrodes via N-doped carbon coating. ACS Sustainable Chem Eng 2020;8:2806–13.

[77]

Zhu Y, Ji X, Cheng S, Chern Z-Y, Jia J, Yang L, et al. Fast energy storage in two-dimensional MoO2 enabled by uniform oriented tunnels. ACS Nano 2019;13:9091–9.

[78]

Xu T, Du H, Liu H, Liu W, Zhang X, Si C, et al. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 2021;33:2101368.

[79]

Chen Z, Hu Y, Shi G, Zhuo H, Ali MA, Jamróz E, et al. Advanced flexible materials from nanocellulose. Adv Funct Mater 2023;33:2214245.

[80]

Ko Y, Kwon G, Choi H, Lee K, Jeon Y, Lee S, et al. Cutting edge use of conductive patterns in nanocellulose-based green electronics. Adv Funct Mater 2023:2302785.

[81]

Jiao S, Zhou A, Wu M, Hu H. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv Sci 2019;6:1900529.

[82]

Zhou K, Dai K, Liu C, Shen C. Flexible conductive polymer composites for smart wearable strain sensors. SmartMat 2020;1:e1010.

[83]

Zhao Z, Xia K, Hou Y, Zhang Q, Ye Z, Lu J. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem Soc Rev 2021;50:12702–43.

[84]

Han X, Xiao G, Wang Y, Chen X, Duan G, Wu Y, et al. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J Mater Chem A 2020;8:23059–95.

[85]

Choi S, Lee H, Ghaffari R, Hyeon T, Kim D-H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28:4203–18.

[86]

Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW. Fundamentals of MXene synthesis. Nat Synth 2022;1:601–14.

[87]

Li K, Liang M, Wang H, Wang X, Huang Y, Coelho J, et al. 3D MXene architectures for efficient energy storage and conversion. Adv Funct Mater 2020;30:2000842.

[88]

Li X, Huang Z, Shuck CE, Liang G, Gogotsi Y, Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem 2022;6:389–404.

[89]

Wang Z, Xu Z, Huang H, Chu X, Xie Y, Xiong D, et al. Unraveling and regulating self-discharge behavior of Ti3C2T MXene-based supercapacitors. ACS Nano 2020;14:4916–24.

[90]

Xiao Z, Xiao X, Kong LB, Dong H, Li X, Sun X, et al. MXenes and MXene-based composites for energy conversion and storage applications. J Materiomics 2023.

[91]

Huang W, Hu L, Tang Y, Xie Z, Zhang H. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv Funct Mater 2020;30:2005223.

[92]

Chaudhari NK, Jin H, Kim B, San Baek D, Joo SH, Lee K. MXene: an emerging two-dimensional material for future energy conversion and storage applications. J Mater Chem A 2017;5:24564–79.

[93]

Levitt A, Zhang J, Dion G, Gogotsi Y, Razal JM. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv Funct Mater 2020;30:2000739.

[94]

Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater 2021;33:2103148.

[95]

Tan Z-L, Wei J-X, Liu Y, Zaman Fu, Rehman W, Hou L-R, et al. V2CT MXene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Met 2022;41:775–97.

[96]

Dey A, Varagnolo S, Power NP, Vangapally N, Elias Y, Damptey L, et al. Doped MXenes—a new paradigm in 2D systems: synthesis, properties and applications. Prog Mater Sci 2023;139:101166.

[97]

Chaturvedi K, Hada V, Paul S, Sarma B, Malvi D, Dhangar M, et al. The rise of MXene: a wonder 2D material, from its synthesis and properties to its versatile applications—a comprehensive review. Top Curr Chem 2023;381:11.

[98]

Malaki M, Jiang X, Wang H, Podila R, Zhang H, Samorì P, et al. MXenes: from past to future perspectives. Chem Eng J 2023;463:142351.

[99]

Guo Y, Du Z, Cao Z, Li B, Yang S. MXene derivatives for energy storage and conversions. Small Methods 2023;7:2201559.

[100]

Iravani S. Role of MXenes in advancing soft robotics. Soft Matter 2023;19:6196–212.

[101]

Khan K, Tareen AK, Iqbal M, Ye Z, Xie Z, Mahmood A, et al. Recent progress in emerging novel MXenes based materials and their fascinating sensing applications. Small 2023;19:2206147.

[102]

Amara U, Hussain I, Ahmad M, Mahmood K, Zhang K. 2D MXene-based biosensing: a review. Small 2023;19:2205249.

[103]

Kulkarni AA, Gaikwad NK, Salunkhe AP, Dahotre RM, Bhat TS, Patil PS. 2D MXene integrated strategies: a bright future for supercapacitors. J Energy Storage 2023;71:107975.

[104]

Xu X, Guo T, Lanza M, Alshareef HN. Status and prospects of MXene-based nanoelectronic devices. Matter 2023;6:800–37.

[105]

Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 2014;7:867–84.

[106]

Zhu Y, Wang S, Ma J, Das P, Zheng S, Wu Z-S. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Mater 2022;51:500–26.

[107]

Man Q, An Y, Shen H, Wei C, Zhang X, Wang Z, et al. MXenes and their derivatives for advanced solid-state energy storage devices. Adv Funct Mater 2023:2303668.

[108]

Ezzah Ab Latif F, Numan A, Mubarak NM, Khalid M, Abdullah EC, Manaf NA, et al. Evolution of MXene and its 2D heterostructure in electrochemical sensor applications. Coord Chem Rev 2022;471:214755.

[109]

Ho DH, Choi YY, Jo SB, Myoung J-M, Cho JH. Sensing with MXenes: progress and prospects. Adv Mater 2021;33:2005846.

[110]

Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, et al. Toward smart sensing by MXene. Small 2023;19:2206126.

[111]

Wu Z, Liu S, Hao Z, Liu X. MXene contact engineering for printed electronics. Adv Sci 2023:2207174.

[112]

Cao Z, Fu J, Wu M, Hua T, Hu H. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater 2021;40:10–21.

[113]

Wang S, Li L, Zheng S, Das P, Shi X, Ma J, et al. Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage. Natl Sci Rev 2023;10:nwac271.

[114]

Zhao X-F, Wen X-H, Zhong S-L, Liu M-Y, Liu Y-H, Yu X-B, et al. Hollow MXene sphere-based flexible e-skin for multiplex tactile detection. ACS Appl Mater Interfaces 2021;13:45924–34.

[115]

Shao Y, Wei L, Wu X, Jiang C, Yao Y, Peng B, et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat Commun 2022;13:3223.

[116]

Zhang Y, Wang L, Zhao L, Wang K, Zheng Y, Yuan Z, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv Mater 2021;33:2007890.

[117]

Duan Z, Hu C, Liu W, Liu J, Chu Z, Yang W, et al. An all-MXene-based flexible, seamless system with integrated wireless charging coil, micro-supercapacitor, and photodetector. Adv Mater Technol 2023:2300157.

[118]

Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 2018;47:2065–129.

[119]

Hasan MM, Hossain MM, Chowdhury HK. Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J Mater Chem A 2021;9:3231–69.

[120]

Li Y, Xiao S, Qiu T, Lang X, Tan H, Wang Y, et al. Recent advances on energy storage microdevices: from materials to configurations. Energy Storage Mater 2022;45:741–67.

[121]

Yu M, Peng Y, Wang X, Ran F. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv Funct Mater 2023:2301877.

[122]

Sha M, Zhao H, Lei Y. Updated insights into 3D architecture electrodes for micropower sources. Adv Mater 2021;33:2103304.

[123]

Zhang P, Yang S, Xie H, Li Y, Wang F, Gao M, et al. Advanced three-dimensional microelectrode architecture design for high-performance on-chip micro-supercapacitors. ACS Nano 2022;16:17593–612.

[124]

Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z, et al. Fabrication technologies for the on-chip integration of 2D materials. Small Methods 2022;6:2101435.

[125]

Xu J, Peng T, Qin X, Zhang Q, Liu T, Dai W, et al. Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices. J Mater Chem A 2021;9:14147–71.

[126]

Usman KAS, Qin S, Henderson LC, Zhang J, Hegh DY, Razal JM. Ti3C2T MXene: from dispersions to multifunctional architectures for diverse applications. Mater Horiz 2021;8:2886–912.

[127]

Fan X, Liu B, Ding J, Deng Y, Han X, Hu W, et al. Flexible and wearable power sources for next-generation wearable electronics. Batteries Supercaps 2020;3:1262–74.

[128]

Qiu J, Zhao H, Lei Y. Emerging smart design of electrodes for micro-supercapacitors: a review. SmartMat 2022;3:447–73.

[129]

Zhao W, Jiang M, Wang W, Liu S, Huang W, Zhao Q. Flexible transparent supercapacitors: materials and devices. Adv Funct Mater 2021;31:2009136.

[130]

Yan J, Li S, Lan B, Wu Y, Lee PS. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv Funct Mater 2020;30:1902564.

[131]

Xie Y, Zhang H, Huang H, Wang Z, Xu Z, Zhao H, et al. High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy 2020;74:104928.

[132]

Huang J, Lu X, Sun T, Yu D, Xu Z, Xie Y, et al. Boosting high-voltage dynamics towards high-energy-density lithium-ion capacitors. Energy Environ Mater 2022:e12505.

[133]

Li K, Li J, Zhu Q, Xu B. Three-dimensional MXenes for supercapacitors: a review. Small Methods 2022;6:2101537.

[134]

Okubo M, Sugahara A, Kajiyama S, Yamada A. MXene as a charge storage host. Acc Chem Res 2018;51:591–9.

[135]

Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev 2020;49:6666–93.

[136]

Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019;48:72–133.

[137]

Garg R, Agarwal A, Agarwal M. A review on MXene for energy storage application: effect of interlayer distance. Mater Res Express 2020;7:022001.

[138]

Xu X, Zhang Y, Sun H, Zhou J, Yang F, Li H, et al. Progress and perspective: MXene and MXene-based nanomaterials for high-performance energy storage devices. Adv Electron Mater 2021;7:2000967.

[139]

Wang S, Ma J, Shi X, Zhu Y, Wu Z-S. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Research Energy 2022;1:e9120018.

[140]

Zhang H, Cao Y, Chee MOL, Dong P, Ye M, Shen J. Recent advances in micro-supercapacitors. Nanoscale 2019;11:5807–21.

[141]

Zhou Y, Qi H, Yang J, Bo Z, Huang F, Islam MS, et al. Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ Sci 2021;14:1854–96.

[142]

Pu S, Wang Z, Xie Y, Fan J, Xu Z, Wang Y, et al. Origin and regulation of self-discharge in MXene supercapacitors. Adv Funct Mater 2023;33:2208715.

[143]

Jiang X, Wu X, Xie Y, Wang Z, Huang J, Qu Y, et al. Additive engineering enables ionic-liquid electrolyte-based supercapacitors to deliver simultaneously high energy and power density. ACS Sustainable Chem Eng 2023;11:5685–95.

[144]

Peng Y-Y, Akuzum B, Kurra N, Zhao M-Q, Alhabeb M, Anasori B, et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ Sci 2016;9:2847–54.

[145]

Jiang Q, Lei Y, Liang H, Xi K, Xia C, Alshareef HN. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater 2020;27:78–95.

[146]

Sreenilayam SP, Ul Ahad I, Nicolosi V, Brabazon D. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater Today 2021;43:99–131.

[147]

Li L, Liu W, Jiang K, Chen D, Qu F, Shen G. In-situ annealed Ti3C2T MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability. Nano-Micro Lett 2021;13:100.

[148]

Huang H, Chu X, Xie Y, Zhang B, Wang Z, Duan Z, et al. Ti3C2T MXene-based micro-supercapacitors with ultrahigh volumetric energy density for all-in-one Si-electronics. ACS Nano 2022;16:3776–84.

[149]

Wu Y, Wu M, Ho D, Hu H. Biaxial stretching array based on high-energy-efficient MXene-based Al-ion micro-supercapacitor island and editable stretchable bridge. ACS Appl Mater Interfaces 2022;14:55770–9.

[150]

Abdolhosseinzadeh S, Schneider R, Verma A, Heier J, Nüesch F, Zhang C. Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv Mater 2020;32:2000716.

[151]

Li L, Meng J, Bao X, Huang Y, Yan X-P, Qian H-L, et al. Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv Energy Mater 2023;13:2203683.

[152]

Keum K, Kim JW, Hong SY, Son JG, Lee S-S, Ha JS. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv Mater 2020;32:2002180.

[153]

Zhao C, Liu Y, Beirne S, Razal J, Chen J. Recent development of fabricating flexible micro-supercapacitors for wearable devices. Adv Mater Technol 2018;3:1800028.

[154]

Dai P, Zhang W, Jiang T, Xiong Y, Wu M. Recent progress of stretchable MXene based micro-supercapacitors. Apl Mater 2023;11:060601.

[155]

Mohan AMV, Kim N, Gu Y, Bandodkar AJ, You J-M, Kumar R, et al. Merging of thin- and thick-film fabrication technologies: toward soft stretchable “island-bridge” devices. Adv Mater Technol 2017;2:1600284.

[156]

Silva CA, lv J, Yin L, Jeerapan I, Innocenzi G, Soto F, et al. Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv Funct Mater 2020;30:2002041.

[157]

Song J. Mechanics of stretchable electronics. Curr Opin Solid State Mater Sci 2015;19:160–70.

[158]

Jiang S, Liu X, Liu J, Ye D, Duan Y, Li K, et al. Flexible metamaterial electronics. Adv Mater 2022;34:2200070.

[159]

Zhang Y, Zhu Y, Zheng S, Zhang L, Shi X, He J, et al. Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. J Energy Chem 2021;63:498–513.

[160]

Azadmanjiri J, Reddy TN, Khezri B, Děkanovský L, Parameswaran AK, Pal B, et al. Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications. J Mater Chem A 2022;10:4533–57.

[161]

Aziz A, Asif M, Ashraf G, Iftikhar T, Hussain W, Wang S. Environmental significance of wearable sensors based on MXene and graphene. Trends Environ Anal Chem 2022;36:e00180.

[162]

Chaudhary V, Khanna V, Ahmed Awan HT, Singh K, Khalid M, Mishra YK, et al. Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors. Biosens Bioelectron 2023;220:114847.

[163]

Liu Y, Zheng S, Ma J, Zhu Y, Wang J, Feng X, et al. Aqueous high-voltage all 3D-printed micro-supercapacitors with ultrahigh areal capacitance and energy density. J Energy Chem 2021;63:514–20.

[164]

Ma J, Zheng S, Zhou F, Zhu Y, Das P, Huang R, et al. All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density. Energy Storage Mater 2023;54:304–12.

[165]

Chu T, Park S, Fu K. 3D printing-enabled advanced electrode architecture design. Carbon Energy 2021;3:424–39.

[166]

Zhu Y, Qin J, Shi G, Sun C, Ingram M, Qian S, et al. A focus review on 3D printing of wearable energy storage devices. Carbon Energy 2022;4:1242–61.

[167]

Ryan KR, Down MP, Hurst NJ, Keefe EM, Banks CE. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. eScience 2022;2:365–81.

[168]

Song F, Li G, Zhu Y, Wu Z, Xie X, Zhang N. Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. J Mater Chem A 2020;8:18538–59.

[169]

Park SH, Goodall G, Kim WS. Perspective on 3D-designed micro-supercapacitors. Mater Des 2020;193:108797.

[170]

Xu X, Tan YH, Ding J, Guan C. 3D printing of next-generation electrochemical energy storage devices: from multiscale to multimaterial. Energy Environ Mater 2022;5:427–38.

[171]

Li J, Levitt A, Kurra N, Juan K, Noriega N, Xiao X, et al. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater 2019;20:455–61.

[172]

Li K, Zhao J, Zhussupbekova A, Shuck CE, Hughes L, Dong Y, et al. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage. Nat Commun 2022;13:6884.

[173]

Zheng S, Wang H, Das P, Zhang Y, Cao Y, Ma J, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv Mater 2021;33:2005449.

[174]

Conway BE. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 1991;138:1539–48.

[175]

Devi M, Wang H, Moon S, Sharma S, Strauss V. Laser-carbonization – a powerful tool for micro-fabrication of patterned electronic carbons. Adv Mater 2023:2211054.

[176]

Zhao L, Liu Z, Chen D, Liu F, Yang Z, Li X, et al. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett 2021;13:49.

[177]

Li C, Bu F, Wang Q, Liu X. Recent developments of inkjet-printed flexible energy storage devices. Adv Mater Interfaces 2022;9:2201051.

[178]

Sajedi-Moghaddam A, Rahmanian E, Naseri N. Inkjet-printing technology for supercapacitor application: current state and perspectives. ACS Appl Mater Interfaces 2020;12:34487–504.

[179]

Huang T-T, Wu W. Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. J Mater Chem A 2019;7:23280–300.

[180]

Liu Y, Zhu H, Xing L, Bu Q, Ren D, Sun B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 2023;15:6025–51.

[181]

Coelho J, Kremer MP, Pinilla S, Nicolosi V. An outlook on printed microsupercapacitors: technology status, remaining challenges, and opportunities. Curr Opin Electrochem 2020;21:69–75.

[182]

Wu CW, Unnikrishnan B, Chen I-WP, Harroun SG, Chang HT, Huang CC. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater 2020;25:563–71.

[183]

Ma J, Zheng S, Cao Y, Zhu Y, Das P, Wang H, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv Energy Mater 2021;11:2100746.

[184]

Ren CY, Qiu SY, Zhai JR, Zhang KQ, Lu JX, Gao J, et al. Ionic liquid-wrapped MXene film with bowl-like structures for highly integrated micro-supercapacitor array with ultrahigh output voltage. Nano Res 2023;16:4926–32.

[185]

Gogotsi Y. Monolithic integrated MXene supercapacitors may power future electronics. Natl Sci Rev 2023;10:nwad020.

[186]

Hermawan A, Amrillah T, Riapanitra A, Ong WJ, Yin S. Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis. Adv Healthcare Mater 2021;10:2100970.

[187]

Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human-machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.

[188]

Zahra Q u A, Ullah S, Shahzad F, Qiu B, Fang X, Ammar A, et al. MXene-based aptasensors: advances, challenges, and prospects. Prog Mater Sci 2022;129:100967.

[189]

Pei Y, Zhang X, Hui Z, Zhou J, Huang X, Sun G, et al. Ti3C2T MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 2021;15:3996–4017.

[190]

Kong D, El-Bahy ZM, Algadi H, Li T, El-Bahy SM, Nassan MA, et al. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater 2022;5:1976–87.

[191]

Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, et al. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett 2023;15:98.

[192]

Cao Z, Yang Y, Zheng Y, Wu W, Xu F, Wang R, et al. Highly flexible and sensitive temperature sensors based on Ti3C2T (MXene) for electronic skin. J Mater Chem A 2019;7:25314–23.

[193]

Zhao L, Fu X, Xu H, Zheng Y, Han W, Wang L. Tissue-like sodium alginate-coated 2D MXene-based flexible temperature sensors for full-range temperature monitoring. Adv Mater Technol 2022;7:2101740.

[194]

Kim SJ, Koh H-J, Ren CE, Kwon O, Maleski K, Cho S-Y, et al. Metallic Ti3C2T MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018;12:986–93.

[195]

Choi J, Kim Y-J, Cho S-Y, Park K, Kang H, Kim SJ, et al. In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv Funct Mater 2020;30:2003998.

[196]

Xu B, Zhi C, Shi P. Latest advances in MXene biosensors. J Phys Mater 2020;3:031001.

[197]

Bhardwaj SK, Singh H, Khatri M, Kim K-H, Bhardwaj N. Advances in MXenes-based optical biosensors: a review. Biosens Bioelectron 2022;202:113995.

[198]

Chen WY, Jiang X, Lai S-N, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun 2020;11:1302.

[199]

Sivasankarapillai VS, Sharma TSK, Wabaidur K-YHSM, Angaiah S, Dhanusuraman R. MXene based sensing materials: current status and future perspectives. ES Energy & Environment 2022;15:4–14.

[200]

Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett 2019;19:1143–50.

[201]

Chao M, He L, Gong M, Li N, Li X, Peng L, et al. Breathable Ti3C2T MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021;15:9746–58.

[202]

Shi X, Fan X, Zhu Y, Liu Y, Wu P, Jiang R, et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat Commun 2022;13:1119.

[203]

Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl Mater Interfaces 2019;11:6685–704.

[204]

Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, et al. Wearable pressure sensors for pulse wave monitoring. Adv Mater 2022;34:2109357.

[205]

Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, et al. End-to-end design of wearable sensors. Nat Rev Mater 2022;7:887–907.

[206]

Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. Disruptive, soft, wearable sensors. Adv Mater 2020;32:1904664.

[207]

Wu H, Liu Q, Du W, Li C, Shi G. Transparent polymeric strain sensors for monitoring vital signs and beyond. ACS Appl Mater Interfaces 2018;10:3895–901.

[208]

Zheng Y, Yin R, Zhao Y, Liu H, Zhang D, Shi X, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem Eng J 2021;420:127720.

[209]

Chen B, Zhang L, Li H, Lai X, Zeng X. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J Colloid Interface Sci 2022;617:478–88.

[210]

Ma Y, Cheng Y, Wang J, Fu S, Zhou M, Yang Y, et al. Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat 2022;4:e12328.

[211]

Yan J, Ma Y, Jia G, Zhao S, Yue Y, Cheng F, et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem Eng J 2022;431:133458.

[212]

Sun Q-J, Lai Q-T, Tang Z, Tang X-G, Zhao X-H, Roy VAL. Advanced functional composite materials toward e-skin for health monitoring and artificial intelligence. Adv Mater Technol 2023;8:2201088.

[213]

Liu Y, Shi Y, Xu X. Evolution and application of all-in-one electrochemical energy storage system. Energy Storage Mater 2021;41:677–96.

[214]

Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, et al. Recent progress on flexible and wearable supercapacitors. Small 2017;13:1701827.

[215]

Das P, Wu Z-S. MXene for energy storage: present status and future perspectives. J Phys Energy 2020;2:032004.

[216]

Hussain I, Lamiel C, Javed MS, Ahmad M, Sahoo S, Chen X, et al. MXene-based heterostructures: current trend and development in electrochemical energy storage devices. Prog Energy Combust Sci 2023;97:101097.

[217]

Zhang J, Zhang G, Zhou T, Sun S. Recent developments of planar micro-supercapacitors: fabrication, properties, and applications. Adv Funct Mater 2020;30:1910000.

[218]

He F, You X, Wang W, Bai T, Xue G, Ye M. Recent progress in flexible microstructural pressure sensors toward human-machine interaction and healthcare applications. Small Methods 2021;5:2001041.

[219]

Cheng M, Zhu G, Zhang F, Tang W-l, Shi J, Yang J-q, et al. A review of flexible force sensors for human health monitoring. J Adv Res 2020;26:53–68.

[220]

Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017;13:1602790.

[221]

Wang Y, Yue Y, Cheng F, Cheng Y, Ge B, Liu N, et al. Ti3C2T MXene-based flexible piezoresistive physical sensors. ACS Nano 2022;16:1734–58.

[222]

Lei D, Liu N, Su T, Wang L, Su J, Zhang Z, et al. Research progress of MXenes-based wearable pressure sensors. Apl Mater 2020;8:110702.

[223]

Sun X, Yao F, Li J. Nanocomposite hydrogel-based strain and pressure sensors: a review. J Mater Chem A 2020;8:18605–23.

[224]

Li M, Zhang Y, Lian L, Liu K, Lu M, Chen Y, et al. Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction. Adv Funct Mater 2022;32:2208141.

[225]

Yi Q, Pei X, Das P, Qin H, Lee SW, Esfandyarpour R. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 2022;101:107511.

[226]

Ma Y, Zhang D, Wang Z, Zhang H, Xia H, Mao R, et al. Self-adhesive, anti-freezing MXene-based hydrogel strain sensor for motion monitoring and handwriting recognition with deep learning. ACS Appl Mater Interfaces 2023;15:29413–24.

[227]

Lai Q-T, Zhao X-H, Sun Q-J, Tang Z, Tang X-G, Roy VAL. Emerging MXene-based flexible tactile sensors for health monitoring and haptic perception. Small 2023:2300283.

[228]

Vaghasiya JV, Mayorga-Martinez CC, Pumera M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex Electron 2023;7:26.

[229]

Pang Y, Yang Z, Yang Y, Ren T-L. Wearable electronics based on 2D materials for human physiological information detection. Small 2020;16:1901124.

[230]

Inman A, Hryhorchuk T, Bi L, Wang R, Greenspan B, Tabb T, et al. Wearable energy storage with MXene textile supercapacitors for real world use. J Mater Chem A 2023;11:3514–23.

[231]

Ma J, Yang K, Jiang Y, Shen L, Ma H, Cui Z, et al. Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep Phys Sci 2022;3:100908.

[232]

Xu S, Dall'Agnese Y, Wei G, Zhang C, Gogotsi Y, Han W. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy 2018;50:479–88.

[233]

Vaghasiya JV, Mayorga-Martinez CC, Vyskočil J, Sofer Z, Pumera M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-phase WS2 nanosheets. Adv Funct Mater 2020;30:2003673.

[234]

Zhao S, Luo X, Cheng Y, Shi Z, Huang T, Yang S, et al. A flexible zinc ion hybrid capacitor integrated system with layers-dependent V2CT MXene. Chem Eng J 2023;454:140360.

[235]

Li Z, Dall'Agnese Y, Guo J, Huang H, Liang X, Xu S. Flexible freestanding all-MXene hybrid films with enhanced capacitive performance for powering a flex sensor. J Mater Chem A 2020;8:16649–60.

[236]

Wang M, Cheng Y, Zhang H, Cheng F, Wang Y, Huang T, et al. Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv Funct Mater 2023;33:2211199.

[237]

Cheng Y, Xie Y, Ma Y, Wang M, Zhang Y, Liu Z, et al. Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system. Nano Energy 2023;107:108131.

[238]

Lim H-R, Kim HS, Qazi R, Kwon Y-T, Jeong J-W, Yeo W-H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32:1901924.

[239]

Chen K, Ren J, Chen C, Xu W, Zhang S. Safety and effectiveness evaluation of flexible electronic materials for next generation wearable and implantable medical devices. Nano Today 2020;35:100939.

[240]

Li H, Liang J. Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv Mater 2020;32:e1805864.

[241]

Zhang S, Liu Y, Hao J, Wallace GG, Beirne S, Chen J. 3D-printed wearable electrochemical energy devices. Adv Funct Mater 2021;32:2103092.

[242]

Yan X, Tong Y, Wang X, Hou F, Liang J. Extrusion-based 3D-printed supercapacitors: recent progress and challenges. Energy Environ Mater 2022;5:800–22.

[243]

MacKenzie JD, Ho C. Perspectives on energy storage for flexible electronic systems. Proc IEEE 2015;103:535–53.

[244]

Nathan A, Ahnood A, Cole MT, Lee S, Suzuki Y, Hiralal P, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE 2012;100:1486–517.

[245]

Ding Y, Wang Z, Duan X, Liu R. Flexible photo-charging power sources for wearable electronics. Mater Today Energy 2023;33:101276.

[246]

Liu R, Wang ZL, Fukuda K, Someya T. Flexible self-charging power sources. Nat Rev Mater 2022;7:870–86.

[247]

Dai B, Gao C, Xie Y. Flexible wearable devices for intelligent health monitoring. VIEW 2022;3:20220027.

[248]

Zhu Y, Zheng S, Qin J, Ma J, Das P, Zhou F, et al. 2.4 V ultrahigh-voltage aqueous MXene-based asymmetric micro-supercapacitors with high volumetric energy density toward a self-sufficient integrated microsystem. Fundamental Research 2022. https://doi.org/10.1016/j.fmre.2022.03.021.

[249]

Zhao J, Zha J, Zeng Z, Tan C. Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. J Mater Chem A 2021;9:18887–905.

[250]

Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the limits of flexibility and stretchability of solar cells: a review. Adv Mater 2021;33:2101469.

[251]

He W, Fu X, Zhang D, Zhang Q, Zhuo K, Yuan Z, et al. Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy 2021;84:105880.

[252]

Wang Y, Yang Y, Wang ZL. Triboelectric nanogenerators as flexible power sources. npj Flex Electron 2017;1:10.

[253]

Chen X, Xie X, Liu Y, Zhao C, Wen M, Wen Z. Advances in healthcare electronics enabled by triboelectric nanogenerators. Adv Funct Mater 2020;30:2004673.

[254]

Jia Y, Jiang Q, Sun H, Liu P, Hu D, Pei Y, et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater 2021;33:2102990.

[255]

Nozariasbmarz A, Collins H, Dsouza K, Polash MH, Hosseini M, Hyland M, et al. Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl Energy 2020;258:114069.

[256]

Zhao Y, Liu L, Zhang F, Di C-a, Zhu D. Advances in organic thermoelectric materials and devices for smart applications. SmartMat 2021;2:426–45.

[257]

Kumar V, Park S, Parida K, Bhavanasi V, Lee PS. Multi-responsive supercapacitors: smart solution to store electrical energy. Mater Today Energy 2017;4:41–57.

[258]

Fagiolari L, Sampò M, Lamberti A, Amici J, Francia C, Bodoardo S, et al. Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Mater 2022;51:400–34.

[259]

Wang R, Yao M, Niu Z. Smart supercapacitors from materials to devices. InfoMat 2020;2:113–25.

[260]

Li L, Zhang Q, He B, Pan R, Wang Z, Chen M, et al. Advanced multifunctional aqueous rechargeable batteries design: from materials and devices to systems. Adv Mater 2022;34:2104327.

[261]

Fu W, Turcheniuk K, Naumov O, Mysyk R, Wang F, Liu M, et al. Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Mater Today 2021;48:176–97.

[262]

Zheng S, Shi X, Das P, Wu Z-S, Bao X. The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv Mater 2019;31:1900583.

[263]

Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, et al. Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv Mater 2020;32:1902343.

[264]

Pyo S, Lee J, Bae K, Sim S, Kim J. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv Mater 2021;33:2005902.

[265]

Kim H, Lee YJ, Byun G, Choi C, Yeo W-H. Advances in ultrathin soft sensors, integrated materials, and manufacturing technologies for enhanced monitoring of human physiological signals. Adv Electron Mater 2023:2201294.

[266]

Lu Y, Z Lou K Jiang, Chen D, Shen G. Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors. Materials Today Nano 2019;8:100050.

[267]

Tang Y, Li X, Lv H, Wang W, Zhi C, Li H. Integration designs toward new-generation wearable energy supply-sensor systems for real-time health monitoring: a minireview. InfoMat 2020;2:1109–30.

[268]

Varma S J, Sambath Kumar K, Seal S, Rajaraman S, Thomas J. Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv Sci 2018;5:1800340.

[269]

Parihar A, Singhal A, Kumar N, Khan R, Khan MA, Srivastava AK. Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett 2022;14:100.

[270]

Solangi NH, Mazari SA, Mubarak NM, Karri RR, Rajamohan N, Vo DVN. Recent trends in MXene-based material for biomedical applications. Environ Res 2023;222:115337.

[271]

Ma C, Ma M-G, Si C, Ji X-X, Wan P. Flexible MXene-based composites for wearable devices. Adv Funct Mater 2021;31:2009524.

[272]

Zhu Y, Ma J, Das P, Wang S, Wu Z-S. High-voltage MXene-based supercapacitors: present status and future perspectives. Small Methods 2023;7:2201609.

[273]

Gao J, Shang K, Ding Y, Wen Z. Material and configuration design strategies towards flexible and wearable power supply devices: a review. J Mater Chem A 2021;9:8950–65.

[274]

Wang W, Xu L, Zhang L, Zhang A, Zhang J. Self-powered integrated sensing system with in-plane micro-supercapacitors for wearable electronics. Small 2023;19:2207723.

[275]

Shi X, Das P, Wu Z-S. Digital microscale electrochemical energy storage devices for a fully connected and intelligent world. ACS Energy Lett 2022;7:267–81.

[276]

Yan W, Ma C, Cai X, Sun Y, Zhang G, Song W. Self-powered and wireless physiological monitoring system with integrated power supply and sensors. Nano Energy 2023;108:108203.

[277]

Xu C, Song Y, Han M, Zhang H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst Nanoeng 2021;7:25.

[278]

Aaryashree Sahoo S, Walke P, Nayak SK, Rout CS, Late DJ. Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Res 2021;14:3669–89.

[279]

Ouyang H, Jiang D, Fan Y, Wang ZL, Li Z. Self-powered technology for next-generation biosensor. Sci Bull 2021;66:1709–12.

[280]

Huang J, Xie Y, You Y, Yuan J, Xu Q, Xie H, et al. Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization. Adv Funct Mater 2023;33:2213095.

[281]

Shi Q, He T, Lee C. More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 2019;57:851–71.

[282]

Fan FR, Tang W, Wang ZL. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater 2016;28:4283–305.

[283]

Liu Y, Wang L, Zhao L, Yu X, Zi Y. Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2020;2:318–40.

[284]

Zhang D, Wang D, Xu Z, Zhang X, Yang Y, Guo J, et al. Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord Chem Rev 2021;427:213597.

[285]

Cao X, Jie Y, Wang N, Wang ZL. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv Energy Mater 2016;6:1600665.

[286]

Zhu M, Yi Z, Yang B, Lee C. Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021;36:101016.

[287]

Tian Y, An Y, Xu B. MXene-based materials for advanced nanogenerators. Nano Energy 2022;101:107556.

[288]

Jiang Q, Wu C, Wang Z, Wang AC, He J-H, Wang ZL, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 2018;45:266–72.

[289]

Zhao Q, Jiang Y, Duan Z, Yuan Z, Zha J, Wu Z, et al. A Nb2CT/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem Eng J 2022;438:135588.

[290]

Wang X, Zhang D, Zhang H, Gong L, Yang Y, Zhao W, et al. In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator. Nano Energy 2021;88:106242.

[291]

Liu L, Feng Y, Wu W. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J Power Sources 2019;410–411:69–77.

[292]

Zhang P, Wang F, Yu M, Zhuang X, Feng X. Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem Soc Rev 2018;47:7426–51.

[293]

Liu H, Zhang G, Zheng X, Chen F, Duan H. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. Int J Extrem Manuf 2020;2:042001.

[294]

Wu Y, Hu H, Yuan C, Song J, Wu M. Electrons/ions dual transport channels design: concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy 2020;74:104812.

[295]

Li Z, Song J, Hu H, Yuan C, Wu M, Ho D. Rolled-up island-bridge (RIB): a new and general electrode configuration design for a wire-shaped stretchable micro-supercapacitor array. J Mater Chem A 2021;9:2899–911.

[296]

Cho H, Lee B, Jang D, Yoon J, Chung S, Hong Y. Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Mater Horiz 2022;9:2053–75.

[297]

Chen X, Villa NS, Zhuang Y, Chen L, Wang T, Li Z, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv Energy Mater 2020;10:1902769.

[298]

Zhou A, Liu Y, Li S, Wang X, Ying G, Xia Q, et al. From structural ceramics to 2D materials with multi-applications: a review on the development from MAX phases to MXenes. J Adv Ceram 2021;10:1194–242.

[299]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248–53.

[300]

Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341:1502–5.

[301]

Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014;516:78–81.

[302]

Das P, Dong Y, Wu X, Zhu Y, Wu ZS. Perspective on high entropy MXenes for energy storage and catalysis. Sci Bull 2023;68:1735–9.

[303]

Gong S, Sheng X, Li X, Sheng M, Wu H, Lu X, et al. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv Funct Mater 2022;32:2200570.

[304]

Li L, Liu WD, Liu Q, Chen ZG. Multifunctional wearable thermoelectrics for personal thermal management. Adv Funct Mater 2022;32:2200548.

[305]

Wang Z, Wei H, Huang Y, Wei Y, Chen J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem Soc Rev 2023;52:2992–3034.

Journal of Materiomics
Pages 1242-1262
Cite this article:
Jia J, Zhu Y, Das P, et al. Advancing MXene-based integrated microsystems with micro-supercapacitors and/or sensors: Rational design, key progress, and challenging perspectives. Journal of Materiomics, 2023, 9(6): 1242-1262. https://doi.org/10.1016/j.jmat.2023.08.013

184

Views

8

Crossref

7

Web of Science

10

Scopus

Altmetrics

Received: 13 July 2023
Revised: 14 August 2023
Accepted: 17 August 2023
Published: 25 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return