AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Observing suppressed polarization in flexible ferroelectric negative capacitance field effect transistors

Chuanlai Rena,b,1Liyufen Daia,c,1Congbing Tanb,dGuangtong Yuanb,eKe QuaJinbin WangcXiangli ZhongcMingqiang Huanga,( )Jiyan DaifGaokuo Zhonga,b,( )Jiangyu Lia,b,e,( )
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China

1These authors contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Negative capacitance (NC) has the potential to enable low power microelectronics beyond the fundamental thermionic limit, and it has been theorized that the thermodynamically unstable NC of ferroelectrics can be stabilized by linear dielectric, making negative capacitance ferroelectric field effect transistors (NC-FeFET) possible. Nevertheless, the validity of NC as a physical concept for ferroelectrics remain contentious despite numerous theoretical and experimental investigations, and the intrinsic ferroelectric NC with suppressed polarization has not been demonstrated except locally at vortex core. While NC-FeFET with subthreshold swing (SS) lower than 60 mV/dec limit has been reported, such device characteristics has not been directly connected to suppressed polarization at materials' level, and alternative mechanisms other than NC have also been proposed. Here we demonstrate stable sub-60 mV/dec SS with hysteresis free IV in NC-FeFET based on SrTiO3/Pb(Zr0.1Ti0.9)O3/SrTiO3 heterostructure, and observe its suppressed polarization at both macroscopic and microscopic scales. The intrinsic ferroelectric NC thus is experimentally confirmed and directly connected to NC-FeFET performance, and the mica-based device is also highly flexible and robust under cyclic bending as well as extended heating.

References

[1]

Ershov M, Liu HC, Li L, Buchanan M, Wasilewski ZR, Jonscher AK. Negative capacitance effect in semiconductor devices. IEEE Trans Electron Dev 1998;45:2196-206.

[2]

Salahuddin S, Datta S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett 2008;8:405-10.

[3]

Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011;479:329-37.

[4]

Alam MA, Si M, Ye PD. A critical review of recent progress on negative capacitance field–effect transistors. Appl Phys Lett 2019;114:090401.

[5]

Íñiguez J, Zubko P, Luk'yanchuk I, Andrés C. Ferroelectric negative capacitance. Nat Rev Mater 2019;4:243-56.

[6]

Hoffmann M, Slesazeck S, Mikolajick T. Progress and future prospects of negative capacitance electronics: a materials perspective. Apl Mater 2021;9:020902.

[7]

Luk'yanchuk I, Razumnaya A, Sene A, Tikhonov Y, Vinokur VM. The ferroelectric field–effect transistor with negative capacitance. npj Comput Mater 2022;8:1-8.

[8]

Landauer R. Can capacitance be negative? Collect Phenom 1976;2:167-70.

[9]

Salvatore GA, Bouvet D, Ionescu AM. Demonstration of subthrehold swing smaller than 60mV/decade in Fe–FET with P(VDF–TrFE)/SiO2 gate stack. IEEE Int Electron Devices 2018;2:1-4.

[10]

Rusu A, Salvatore GA, Jimenez D, Ionescu AM. Metal–ferroelectric–metal–oxide–semiconductor field effect transistor with sub–60 mV/decade subthreshold swing and internal voltage amplification. Proc IEDM 2010;16:31-4.

[11]

Khan AI, Chatterjee K, Duarte JP, Lu ZY, Sachid A, Khandelwal S, et al. Negative capacitance in short–channel FinFETs externally connected to an epitaxial ferroelectric capacitor. IEEE Electron Device Lett 2015;37:111-4.

[12]

Dasgupta S, Rajashekhar A, Majumdar K, Agrawal N, Razavieh A, Trolier MS, et al. Sub–kT/q switching in strong inversion in PbZr0.52Ti0.48O3 gated negative capacitance FETs. IEEE J Explor Solid–State Comput Devices Circuits 2015;1:43-8.

[13]

McGuire FA, Cheng Z, Price K, Franklin AD. Sub–60 mV/decade switching in 2D negative capacitance field–effect transistors with integrated ferroelectric polymer. Appl Phys Lett 2016;109:093101.

[14]

Si MW, Su CJ, Jiang CS, Conrad NJ, Zhou H, Maize KD, et al. Steep–slope hysteresis–free negative capacitance MoS2 transistors. Nat Nanotechnol 2018;13:24-8.

[15]

Wang XW, Yu P, Lei ZD, Zhu C, Cao X, Liu FC, et al. Van der Waals negative capacitance transistors. Nat Commun 2019;10:3037.

[16]

Cho HW, Pujar P, Choi M, Kang S, Hong S, Park J, et al. Direct growth of orthorhombic Hf0.5Zr0.5O2 thin films for hysteresis–free MoS2 negative capacitance field–effect transistors. npj 2D Mater Appl 2021;5:46-53.

[17]

Kittl JA, Obradovic B, Reddy D, Rakshit T, Hatcher RM, Rodder MS. On the validity and applicability of models of negative capacitance and implications for MOS applications. Appl Phys Lett 2018;113:042904.

[18]

Li XY, Toriumi A. Stepwise internal potential jumps caused by multiple–domain polarization flips in metal/ferroelectric/metal/paraelectric/metal stack. Nat Commun 2020;11:1895.

[19]

Van Houdt J, Roussel P. Physical model for the steep subthreshold slope in ferroelectric FETs. IEEE Electron Device Lett 2019;39:877-80.

[20]

Liu Z, Bhuiyan MA, Ma TP. A critical examination of 'quasi–static negative capacitance' (QSNC) theory. IEEE Int Elec Dev Meeting 2018;31:1-4.

[21]

Khan AI, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, et al. Negative capacitance in a ferroelectric capacitor. Nat Mater 2015;14:182-6.

[22]

Hoffmann M, Fengler FP, Herzig M, Mittmann T, Max B, Schroeder U, et al. Unveiling the double–well energy landscape in a ferroelectric layer. Nature 2019;565:464-7.

[23]

Saha AK, Datta S, Gupta SK. "Negative capacitance" in resistor–ferroelectric and ferroelectric–dielectric networks: apparent or intrinsic? J Appl Phys 2018;123:105102.

[24]

Kim YJ, Park HW, Hyun SD, Kim HJ, Kim KD, Lee YH, et al. Voltage drop in a ferroelectric single layer capacitor by retarded domain nucleation. Nano Lett 2017;17:7796-802.

[25]

Zubko P, Wojdeł JC, Hadjimichael M, Fernandez–Pena S, Sené A, Luk'yanchuk I, et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 2016;534:524-8.

[26]

Buragohain P, Richter C, Schenk T, Lu H, Mikolajick T, Schroeder U, et al. Nanoscopic studies of domain structure dynamics in ferroelectric La: HfO2 capacitors. Appl Phys Lett 2018;112:222901.

[27]

Yadav AK, Nguyen KX, Hong Z, García–Fernández P, Aguado–Puente P, Nelson CT, et al. Spatially resolved steady–state negative capacitance. Nature 2019;565:468-71.

[28]

Chu YH. Van der Waals oxide heteroepitaxy. npj Quantum Mater 2017;2:67-71.

[29]

Zhong GK, Li JY. Muscovite mica as a universal platform for flexible electronics. J Materiomics 2020;6:455-7.

[30]

Shu YC, Bhattacharya K. Domain patterns and macroscopic properties of ferroelectric materials. Phil Mag B 2001;81:2021-54.

[31]

Hoffmann M, Pešić M, Slesazeck S, Schroeder U, Mikolajick T. On the stabilization of ferroelectric negative capacitance in nanoscale devices. Nanoscale 2018;10:10891-9.

[32]

Islam Khan A, Bhowmik D, Yu P, Joo Kim S, Pan X, Ramesh R, et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl Phys Lett 2011;99:113501.

[33]

Zhong GK, Zi MF, Ren CL, Xiao Q, Tang MK, Wei LY, et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Appl Phys Lett 2020;117:092903.

[34]

Ren CL, Zhong GK, Xiao Q, Tan CB, Feng M, Zhong XL, et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption. Adv Funct Mater 2020;30:190613.

[35]

Jiang J, Bitla Y, Huang CW, Do TH, Liu HJ, Hsieh YH, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci Adv 2017;3:e1700121.

[36]

Park HW, Roh J, Lee YB, Hwang CS. Modeling of negative capacitance in ferroelectric thin films. Adv Mater 2019;31:1805266.

[37]

Pintilie L, Boni GA, Chirila CF, Stancu V, Trupina L, Istrate CM, et al. Homogeneous versus inhomogeneous polarization switching in PZT thin films: impact of the structural quality and correlation to the negative capacitance effect. Nanomaterials 2021;11:2124-40.

[38]

McGuire FA, Lin YC, Price K, Rayner GB, Khandelwal S, Salahuddin S, et al. Sustained Sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett 2017;17:4801-6.

[39]

Huang JK, Wan Y, Shi JJ, Zhang J, Wang ZH, Wang WX, et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 2011;605:262-7.

[40]

Li ZW, Wang YJ, Tian G, Li PL, Zhao L, Zhang FY, et al. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci Adv 2017;3:e1700919.

[41]

Zhang Y, Parsonnet E, Fernandez A, Griffin SM, Huyan HX, Lin CK, et al. Ferroelectricity in a semiconducting all-inorganic halide perovskite. Sci Adv 2022;8:eabj5881.

[42]

Chen QN, Ou Y, Ma FY, Li JY. Mechanisms of electromechanical coupling in strain based scanning probe microscopy. Appl Phys Lett 2014;104:242907.

[43]

Zhong G, An F, Bitla Y, Wang JB, Zhong XL, Yu JX, et al. Deterministic, reversible, and nonvolatile low-voltage writing of magnetic domains in epitaxial BaTiO3/Fe3O4 heterostructure. ACS Nano 2018;12:9558-67.

[44]

Xia GZ, Huang BY, Zhang Y, Zhao XY, Wang C, Jia CM, et al. Nanoscale insights into photovoltaic hysteresis in triple-cation mixed-halide perovskite: resolving the role of polarization and ionic migration. Adv Mater 2019;31:1902870.

[45]

Huang BY, Liu ZH, Wu CW, Zhang Y, Zhao JJ, Wang X. Polar or nonpolar? That is not the question for perovskite solar cells. Natl Sci Rev 2021;8:nwab094.

Journal of Materiomics
Pages 762-769
Cite this article:
Ren C, Dai L, Tan C, et al. Observing suppressed polarization in flexible ferroelectric negative capacitance field effect transistors. Journal of Materiomics, 2024, 10(4): 762-769. https://doi.org/10.1016/j.jmat.2023.09.008

179

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 10 May 2023
Revised: 25 August 2023
Accepted: 09 September 2023
Published: 14 October 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return