AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Clathrate structure of YB3C3 for high-performance thermoelectrics with superior mechanical properties

Yangfan CuiaShuai DuanaXiaojun WangaQinghang TangbJinyang XibXiaobing Liua,c,( )Yongsheng Zhanga,cXin Chena,c,( )
Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
Materials Genome Institute, Shanghai University, Shanghai, 200444, China
Advanced Research Institute of Multidisciplinary Science, Qufu Normal University, Qufu, Shandong, 273165, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Exploring high-performance thermoelectric materials with improved mechanical properties is important for broadening the application scope and the assembly requirement of stable devices. This work presents an effective strategy to discover hard thermoelectric material by inserting foreign atoms in the rigid covalent framework. We demonstrate this in boron-carbon clathrate Ⅶ structure, showing a promising candidate for highly efficient thermoelectric energy conversion, especially with Y atom filled in the cage, with a peak zT of 0.73 at 1, 000 K. The ab initio calculations indicate that YB3C3 system has low lattice thermal conductivity of 4.5 W/(m·K) at 1, 000 K due to the strong rattling of encaged Y atom. The strongly covalent framework provides highly degenerate band structures consisting of heavy and light electron pockets, which can maintain high carrier mobility arising from small effective mass and thus large group velocity. Consequently, high power factor can be achieved in YB3C3 for both electron and hole doping. In addition, it exhibits well mechanical properties and a Vickers hardness of 23.7 GPa because of the strong covalent boron-carbon framework. This work provides a novel avenue for the search of high-performance thermoelectric materials with excellent mechanical properties, based on boron-carbon clathrate structure.

References

[1]

Fu TZ, Yue XQ, Wu HJ, Fu CG, Zhu TJ, Liu XH, et al. Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT > 2 by multi-functional alloying. J Materiomics 2016;2(2):141-9.

[2]

Chen X, Parker D, Singh DJ. Importance of non-parabolic band effects in the thermoelectric properties of semiconductors. Sci Rep 2013;3(1):1-6.

[3]

Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008;321(5888):554-7.

[4]

Pei YZ, LaLonde A, Iwanaga S, Snyder GJ. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci 2011;4(6):2085-9.

[5]

Xiao Y, Zhao LD. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater 2018;3(1):1-12.

[6]

Zheng Y, Zhang Q, Su XL, Xie HY, Shu SC, Chen TL, et al. Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater 2015;5(5):1401391.

[7]

Xie WJ, Tang XF, Yan YG, Zhang QJ, Tritt TM. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl Phys Lett 2009;94(10):102111.

[8]

Zheng G, Su XL, Li XR, Liang T, Xie HY, She XY, et al. Toward high-thermoelectric-performance large-size nanostructured BiSbTe alloys via optimization of sintering-temperature distribution. Adv Energy Mater 2016;6(13):1600595.

[9]

Zhang YW, Jia XP, Sun HR, Sun B, Liu BW, Liu HQ, et al. Enhanced thermoelectric performance of nanostructured CNTs/BiSbTe bulk composite from rapid pressure-quenching induced multi-scale microstructure. J Materiomics 2016;2(4):316-23.

[10]

Zhu YK, Guo J, Chen L, Gu SW, Zhang YX, Shan Q, et al. Simultaneous enhancement of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing. Chem Eng J 2021;407:126407.

[11]

Perumal S, Roychowdhury S, Negi DS, Datta R, Biswas K. High thermoelectric performance and enhanced mechanical stability of p-type GeSbTe. Chem Mater 2015;27(20):7171-8.

[12]

Jin Y, Zhang XX, Xiao Y, He WK, Wang DY, Li J, et al. Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scripta Mater 2020;183:22-7.

[13]

Wang H, Zheng SK, Wu H, Xiong X, Xiong QH, Wang HY, et al. Realizing enhanced thermoelectric performance and hardness in icosahedral Cu5FeS4-xSex with high-density twin boundaries. Small 2022;18(2):2104592.

[14]

Wang HY, Han G, Zhang B, Chen Y, Liu XF, Zhang KQ, et al. AgSbSe2 inclusions enabling high thermoelectric and mechanical performance in n-type Ag2Se-based composites. Acta Mater 2023;248:118753.

[15]

Zhao LD, Zhang BP, Li JF, Zhou M, Liu WS, Liu J. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 2008;455(1):259-64.

[16]

Solozhenko VL, Andrault D, Fiquet G, Mezouar M, Rubie DC. Synthesis of superhard cubic BC2N. Appl Phys Lett 2001;78(10):1385-7.

[17]

Martin J, Nolas G, Wang H, Yang JH. Thermoelectric properties of silicon-germanium type Ⅰ clathrates. J Appl Phys 2007;102(10):103719.

[18]

Shen JN, Xie TZ, Zhang LK, Wang P, Fang ZX. Si2Ge: a new Ⅶ-type clathrate with ultralow thermal conductivity and high thermoelectric property. Sci Rep 2020;10(1):1-8.

[19]

Iversen BB, Palmqvist AE, Cox DE, Nolas GS, Stucky GD, Blake NP, et al. Why are clathrates good candidates for thermoelectric materials? J Solid State Chem 2000;149(2):455-8.

[20]

Dolyniuk JA, Owens-Baird B, Wang J, Zaikina JV, Kovnir K. Clathrate thermoelectrics. Mater Sci Eng R Rep 2016;108:1-46.

[21]

Rull-Bravo M, Moure A, Fernández J, Martín-González M. Skutterudites as thermoelectric materials: revisited. RSC Adv 2015;5(52):41653-67.

[22]

Meng XF, Liu ZH, Cui B, Qin DD, Geng HY, Cai W, et al. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv Energy Mater 2017;7(13):1602582.

[23]

Singh DJ, Mazin I. Calculated thermoelectric properties of La-filled skutterudites. Phys Rev B 1997;56(4):R1650.

[24]

Zhou ZX, Agne MT, Zhang QH, Wan S, Song QF, Xu Q, et al. Microstructure and composition engineering Yb single-filled CoSb3 for high thermoelectric and mechanical performances. J Materiomics 2019;5(4):702-10.

[25]

Jiang J, Zhang R, Yang CC, Niu Y, Zhou T, Pan Y, et al. Enhanced thermoelectric performance in GaxCo4Sb12.3-yTey skutterudites via suppressing bipolar effects for commercial application. J Materiomics 2020;6(2):240-7.

[26]

Tadano T, Gohda Y, Tsuneyuki S. Impact of rattlers on thermal conductivity of a thermoelectric clathrate: a first-principles study. Phys Rev Lett 2015;114(9):095501.

[27]
Slack GA. New materials and performance limits for thermoelectric cooling. CRC handbook of thermoelectrics 1995:407-440.
[28]

Beekman M, Morelli DT, Nolas GS. Better thermoelectrics through glass-like crystals. Nat Mater 2015;14(12):1182-5.

[29]

Zeng T, Hoffmann R, Nesper R, Ashcroft N, Strobel TA, Proserpio DM. Li-Filled, B-substituted carbon clathrates. J Am Chem Soc 2015;137(39):12639-52.

[30]

Feng XL, Zhang XY, Liu HY, Qu X, Redfern SA, John ST, et al. Low-density superhard materials: computational study of Li-inserted B-substituted closo-carboranes LiBC11 and Li2B2C10. RSC Adv 2016;6(58):52695-9.

[31]

Ribeiro FJ, Tangney P, Louie SG, Cohen ML. Hypothetical hard structures of carbon with cubic symmetry. Phys Rev B 2006;74(17):172101.

[32]

Pei YZ, LaLonde A, Iwanaga S, Snyder GJ. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci 2011;4(6):2085-9.

[33]

Yu FR, Zhang JJ, Yu DL, He JL, Liu ZY, Xu B, et al. Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk. J Appl Phys 2009;105(9).

[34]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54(16):11169.

[35]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77(18):3865.

[36]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003;118(18):8207-15.

[37]
Heyd J, Scuseria GE, Ernzerhof M. Erratum: "Hybrid functionals based on a screened Coulomb potential". J Chem Phys 2006;118(21):8207 [J Chem Phys 2003;118(18):8207-15].
[38]

Den Toonder J, Van Dommelen J, Baaijens F. The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation. Model Simulat Mater Sci Eng 1999;7(6):909.

[39]

Chen XQ, Niu HY, Li DZ, Li YY. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011;19(9):1275-81.

[40]

Madsen GK, Singh DJ. BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 2006;175(1):67-71.

[41]

Ganose AM, Park J, Faghaninia A, Woods-Robinson R, Persson KA, Jain A. Efficient calculation of carrier scattering rates from first principles. Nat Commun 2021;12(1):2222.

[42]

Duan S, Cui YF, Chen X, Yi WC, Liu YX, Liu XB. Ultrahigh thermoelectric performance realized in black phosphorus system by favorable band engineering through group VA doping. Adv Funct Mater 2019;29(38):1904346.

[43]

Madsen GK. Automated search for new thermoelectric materials: the case of LiZnSb. J Am Chem Soc 2006;128(37):12140-6.

[44]

Peng H, Kioussis N, Snyder GJ. Elemental tellurium as a chiral p-type thermoelectric material. Phys Rev B 2014;89(19):195206.

[45]

Yadav MK, Sanyal B. First principles study of thermoelectric properties of Li-based half-Heusler alloys. J Alloys Compd 2015;622:388-3.

[46]

Jia TT, Feng ZZ, Guo SP, Zhang XM, Zhang YS. Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations. ACS Appl Mater Interfaces 2020;12(10):11852-64.

[47]

Liu WS, Zhang QY, Lan YC, Chen S, Yan X, Zhang Q, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Energy Mater 2011;1(4):577-87.

[48]

Pei YL, He JQ, Li JF, Li F, Liu QJ, Pan W, et al. High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater 2013;5(5):e47.e47.

[49]

Zhao LD, Lo SH, He JQ, Li H, Biswas K, Androulakis J, et al. High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J Am Chem Soc 2011;133(50):20476-87.

[50]

Li W, Carrete J, Katcho NA, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun 2014;185(6):1747-58.

[51]

Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater 2015;108:1-5.

[52]

Lykke L, Iversen BB, Madsen GKH. Electronic structure and transport in the low-temperature thermoelectric CsBi4Te6: semiclassical transport equations. Phys Rev B 2006;73(19):195121.

[53]

Wang Y, Chen X, Cui T, Niu YL, Wang YC, Wang M, et al. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase. Phys Rev B 2007;76(15):155127.

[54]

Xiao Y, Chang C, Pei Y, Wu D, Peng KL, Zhou XY, et al. Origin of low thermal conductivity in SnSe. Phys Rev B 2016;94(12):125203.

[55]

Jia TT, Chen G, Zhang YS. Lattice thermal conductivity evaluated using elastic properties. Phys Rev B 2017;95(15):155206.

[56]

Ma C, Bai X, Ren Q, Liu HQ, Gu YJ, Cui HZ. From microstructure evolution to thermoelectric and mechanical properties enhancement of SnSe. J Mater Sci Technol 2020;58:10-15.

[57]

Ni JE, Case ED, Khabir KN, Stewart RC, Wu CI, Hogan TP, et al. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials. Mater Sci Eng B 2010;170(1):58-66.

[58]

Schmidt RD, Case ED, Giles J, Ni JE, Hogan TP. Room-temperature mechanical properties and slow crack growth behavior of Mg2Si thermoelectric materials. J Electron Mater 2012;41(6):1210-6.

[59]

Schmidt RD, Ni JE, Case ED, Sakamoto JS, Kleinow DC, Wing BL, et al. Room temperature Young's modulus, shear modulus, and Poisson's ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials. J Alloys Compd 2010;504(2):303-9.

[60]

Recknagel C, Reinfried N, Höhn P, Schnelle W, Rosner H, Grin Y, et al. Application of spark plasma sintering to the fabrication of binary and ternary skutterudites. Sci Technol Adv Mater 2007;8(5):357-63.

[61]

Zhu L, Borstad GM, Liu H, Guńka PA, Guerette M, Dolyniuk JA, et al. Carbon-boron clathrates as a new class of sp3-bonded framework materials. Sci Adv 2020;6(2):eaay8361.

[62]

Strobel TA, Zhu L, Guńka PA, Borstad GM, Guerette M. A lanthanum-filled carbon-boron clathrate. Angew Chem Int Ed 2021;133(6):2913-7.

Journal of Materiomics
Pages 783-791
Cite this article:
Cui Y, Duan S, Wang X, et al. Clathrate structure of YB3C3 for high-performance thermoelectrics with superior mechanical properties. Journal of Materiomics, 2024, 10(4): 783-791. https://doi.org/10.1016/j.jmat.2023.09.010

116

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 18 July 2023
Revised: 01 September 2023
Accepted: 17 September 2023
Published: 16 October 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return