AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improved piezoelectric and luminescent properties in Sm-modified Bi0.5Na0.5TiO3-BaTiO3 multifunctional ceramics

Shuai Chenga,b,1Kehong Zhangd,1Chongyang LibBoping Zhangc,( )Jianguo Chena,( )Kang SunaChangrong zhoubJingtai ZhaobQisheng LinbGuanghui Raob,( )Siqi Shia,( )
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
Guangxi Key Laboratory of Information Materials & School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou, 730020, China

1Shuai Cheng and Kehong Zhang contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The 0.93(Na0.5Bi0.5)1-xSmxTiO3-0.07BaTiO3 multifunctional ceramics were prepared by solid-phase reaction method. The phase structure, microstructure, electrical and photoluminescent properties were systematically studied. With increasing x, the ceramics undergoes the phase transition from rhombohedral to tetragonal with some rhombohedral distortion, along with a reduced grain size and increased relative density. On the other hand, the Sm3+ doping enhances the electric-field driven reversible phase transition and domain size, and reduces the domain walls, thereby contributing to improved piezoelectricity and decreased depolarization temperature (Td) from 91 ℃ to 40 ℃. Excellent piezoelectric properties of d33 = 213 pC/N and kp = 29.9% are achieved in the x = 0.010 ceramic. Under excitation (407 nm), the Sm3+-doped ceramic exhibits bright reddish-orange fluorescence at 564, 599, 646 nm and 710 nm. A polarization-induced enhancement of photoluminescence is obtained in BNBT-xSm ceramics with an improved relative intensity of emission band at 646 nm. These results indicate that Sm3+-doped BNBT ceramics show great potential in electro-optic integration and coupling device applications.

References

[1]

Sherman VO, Tagantsev AK, Setter N, Iddles D, Price T. Ferroelectric-dielectric tunable composites. J Appl Phys 2006;99(7):074104.

[2]
Ye Z-G. Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications. Elsevier; 2008.
[3]

Panda P. Environmental friendly lead-free piezoelectric materials. J Mater Sci 2009;44:5049-62.

[4]

Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater 2018;17(4):349-54.

[5]

Cheng S, Zhang B, Ai S, Yu H, Wang X, Yang J, et al. Enhanced piezoelectric properties and thermal stability of Bi0.5Na0.5TiO3 modified BiFeO3-BaTiO3 ceramics with morphotropic phase boundary. J Materiomics 2023;9(3):464-71.

[6]

Song A, Tang Y-C, Li H, Wang N, Zhao L, Pei J, et al. Enhanced piezoelectricity in 0.7BiFeO3-0.3BaTiO3 lead-free ceramics: distinct effect of poling engineering. J Materiomics 2023;9(5):971-9.

[7]

Nong Y-Q, Cheng S, Zhang B-P, Zhao J-T, Zhou C-R, Rao G-H, et al. Phase structure, electrical and luminescent properties of Eu-modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 multifunctional ceramics. Ceram Int 2022;48(12):17481-8.

[8]

Chen G, Ji C, Bai X, Wang J, Chen C, Zhou Z, et al. Enhanced the energy storage performance of NBT-BY relaxor ferroelectric ceramics doped by STO. Mater Today Commun 2023;35:106439.

[9]

Ji C, Chen G, Wang J, Bai X, Zhang Z, Chen C, et al. Superior energy storage performance of <001> -oriented NBT-BY-STO relaxor ferroelectric textured ceramics. J Eur Ceram Soc 2023;43(3):957-65.

[10]

Luo H, Tang S, Liu H, Sun Z, Gao B, Ren Y, et al. Revealing structure behavior behind the piezoelectric performance of prototype lead-free Bi0.5Na0.5TiO3-BaTiO3 under in-situ electric field. J Materiomics 2022;8(6):1104-12.

[11]

Zhao S, Zhang Y, Zhang Q, Li H, Gao J, Li M, et al. Improved electric-field-induced strain and strong photoluminescence properties in novel Er3+-modified 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 multifunctional ceramics. Ceram Int 2022;48(10):14301-6.

[12]

Ruan K, Chen X, Liang T, Wu G, Bao D. Photoluminescence and electrical properties of highly transparent (Bi, Eu)4Ti3O12 ferroelectric thin films on indium-tin-oxide-coated glass substrates. J Appl Phys 2008;103(7):074101.

[13]

Sun H, Peng D, Wang X, Tang M, Zhang Q, Yao X. Strong red emission in Pr doped (Bi0.5Na0.5)TiO3 ferroelectric ceramics. J Appl Phys 2011;110(1):016102.

[14]

Lau CM, Xu XW, Kwok KW. Photoluminescence, ferroelectric, dielectric and piezoelectric properties of Er-doped BNT–BT multifunctional ceramics. Appl Surf Sci 2015;336:314-20.

[15]

Li W, Hao J, Fu P, Du J, Li P, Hu C, et al. Large electrostrictive effect and strong photoluminescence properties in Sm2O3-modified lead-free potassium sodium niobate-based piezoelectric ceramics. J Materiomics 2020;6(4):768-80.

[16]

Gong J, Du P, Li W, Luo L. Structure, electrical and luminescent properties of the NBT: Er-0.3CT: Pr composite ceramics. J Eur Ceram Soc 2021;41(9):4815-25.

[17]

Ma C, Zhou W, Chen G, Cheng J, Zhai Z, Tan W, et al. Compositional dependent electric-field-induced photoluminescence modulation in Eu3+-doped (1-x)Na0.5Bi0·5TiO3-xCaTiO3 (x=0.07, 0.10) piezoelectric ceramics. J Lumin 2020;228:117636.

[18]

Lun M, Wang W, Xing Z, Wan Z, Wu W, Song H, et al. Luminescence and electrical properties of Eu-modified Bi0.5Na0.5TiO3 multifunctional ceramics. J Am Ceram Soc 2019;102(9):5243-52.

[19]

Thoan NH, Lam NH, Thu Hieu HT, Hoang NT, Van Vinh P, Van Hao N, et al. Tunable optical properties of Bi1/2Na1/2TiO3 materials via Sm1/2Na1/2TiO3 addition. Vacuum 2021;191:110389.

[20]

Wei T, Sun FC, Zhao CZ, Li CP, Yang M, Wang YQ. Photoluminescence properties in Sm doped Bi1/2Na1/2TiO3 ferroelectric ceramics. Ceram Int 2013;39(8):9823-8.

[21]

Mahajan A, Zhang H, Wu J, Ramana EV, Reece MJ, Yan H. Effect of phase transitions on thermal depoling in lead-free 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 based piezoelectrics. J Phys Chem C 2017;121(10):5709-18.

[22]

Petnoi N, Bomlai P, Jiansirisomboon S, Watcharapasorn A. Effects of Nb-doping on the micro-structure and dielectric properties of (Bi0.5Na0.5)TiO3 ceramics. Ceram Int 2013;39:113-7.

[23]

Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J Appl Phys 2011;110(7):074106.

[24]

Viola G, Mkinnon R, Koval V, Adomkevicius A, Dunn S, Yan H. Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J Phys Chem C 2014;118(16):8564-70.

[25]

Jones G, Thomas P. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr 2002;58(2):168-78.

[26]

Viola G, Ning H, Wei X, Deluca M, Adomkevicius A, Khaliq J, et al. Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J Appl Phys 2013;114(1):014107.

[27]

Yan H, Inam F, Viola G, Ning H, Zhang H, Jiang Q, et al. The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J Adv Dielectr 2011;1:107-18.01.

[28]

Liu X, Zhai J, Shen B. Novel bismuth ferrite-based lead-free incipient piezoceramics with high electromechanical response. J Mater Chem C 2019;7(17):5122-30.

[29]

Xun B, Song A, Yu J, Yin Y, Li JF, Zhang BP. Lead-free BiFeO3-BaTiO3 ceramics with high curie temperature: fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients. ACS Appl Mater Interfaces 2021;13(3):4192-202.

[30]

Kutnjak Z, Petzelt J, Blinc R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 2006;441(7096):956-9.

[31]

Ahart M, Somayazulu M, Cohen R, Ganesh P, Dera P, Mao H-k, et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008;451(7178):545-8.

[32]

Xu J, Li Q, Yang L, Zeng W, Zhou C, Yuan C, et al. Effects of thermal and electrical histories on structure and dielectric behaviors of (Li0.5Nd0.5)2+-modified (Bi0.5Na0.5)TiO3-BaTiO3 ceramics. J Materiomics 2017;3(2):121-9.

[33]

Cheng X, Venkataraman LK, Li Y. Simultaneous enhancement of piezoelectric constant and thermal stability in lead-free Fe-doped 0.94(Na1/2Bi1/2)TiO3-0.06BaTiO3 ceramics. J Alloys Compd 2022;891:161880.

[34]

He H, Lu W, Oh JAS, Li Z, Lu X, Zeng K, et al. Probing the coexistence of ferroelectric and relaxor states in Bi0.5Na0.5TiO3-based ceramics for enhanced piezoelectric performance. ACS Appl Mater Interfaces 2020;12(27):30548-56.

[35]

Lu DY, Guan DX, Li HB. Multiplicity of photoluminescence in Raman spectroscopy and defect chemistry of (Ba1-xRx)(Ti1-xHox)O3 (R = La, Pr, Nd, Sm) dielectric ceramics. Ceram Int 2018;44(2):1483-92.

[36]

Arulmozhi A, Vishista K, Subalakshmi G. Synthesis, structural, tunable-luminescence spectra and quenching behaviour of Sm3+ ions activated Ba1–xBixTiO3 phosphors for LED applications. Optik 2020;205:164252.

[37]

Houtong C, Rui L, Min Y, Liren L, Weiping Z, Shangda X, et al. Luminescence concentration quenching of 1D2 state in YPO4: Pr3+. J Phys-Condens Mat 2001;13(5):1151.

[38]

Yang X, Liu R, Xu X, Liu Z, Sun M, Yan W, et al. Effective repeatable mechanoluminescence in heterostructured Li1-xNaxNbO3: Pr3+. Small 2021;17(46):2103441.

[39]

Xia X, Jiang X, Chen C, Tu N, Chen Y, Li X, et al. Composition and poling-induced modulation on photoluminescence properties for NBT-xBT: Pr3+ ceramics. J Eur Ceram Soc 2018;38(4):1498-1507.

[40]

Eng HW, Barnes PW, Auer BM, Woodward PM. Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J Solid State Chem 2003;175(1):94-109.

[41]

Zou H, Peng D, Wu G, Wang X, Bao D, Li J, et al. Polarization-induced enhancement of photoluminescence in Pr3+ doped ferroelectric diphase BaTiO3-CaTiO3 ceramics. J Appl Phys 2013;114(7):073103.

[42]

Zhang Q, Sun H, Zhang Y, Ihlefeld J. Polarization-induced photoluminescence quenching in (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3): Pr ceramics. J Am Ceram Soc 2014;97(3):868-73.

Journal of Materiomics
Pages 803-810
Cite this article:
Cheng S, Zhang K, Li C, et al. Improved piezoelectric and luminescent properties in Sm-modified Bi0.5Na0.5TiO3-BaTiO3 multifunctional ceramics. Journal of Materiomics, 2024, 10(4): 803-810. https://doi.org/10.1016/j.jmat.2023.09.012

183

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 15 August 2023
Revised: 15 September 2023
Accepted: 22 September 2023
Published: 18 October 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return