AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Size effects of polydopamine-coated BaTiO3 nanoparticles on the piezoelectric performance of P(VDF-TrFE)/BaTiO3 composite

Hyeokjun SiDonghyun LeeDonghyuck ParkJeonghoon OhJunseo GuInje LeeKwanlae Kim,( )
Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SeoulTech), Seoul, 01811, Republic of Korea

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The size effect of the polydopamine (PDA)-coated BaTiO3 (BTO) (BTO@PDA) nanoparticles (NPs) on the interfacial compatibility between BTO NPs and the polymer matrix and the resultant piezoelectric performance of the composite films remain elusive. In this study, BTO and BTO@PDA NPs of various sizes were incorporated into a P(VDF-TrFE) matrix to prepare two series of P(VDF-TrFE)/BTO and P(VDF-TrFE)/BTO@PDA composites. Subsequently, the effects of the NP size on the dielectric, ferroelectric, and piezoelectric properties of the composite films were comprehensively studied. As the size of the BTO@PDA NPs increased, residual hole defects were clearly observed in the cross section of the composite film. The deteriorated interfacial compatibility due to the large size of the BTO@PDA NPs was also confirmed by the increased dielectric permittivity of the composite film, which was induced by the intensified interfacial polarisation. The P(VDF-TrFE)/BTO@PDA composite with NPs of the smallest size (100 nm) exhibited superior piezoelectric performance owing to the excellent interfacial compatibility between the fillers and the matrix. The piezoelectric performance was significantly enhanced by the reduced leakage current during electrical poling and reduced trap charges. Finally, the pulse waveform originating from the radial artery was precisely measured using the optimised P(VDF-TrFE)/BTO@PDA composite film.

References

[1]

Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc 1999;82:797-818.

[2]

Yan J, Liu M, Jeong YG, Kang W, Li L, Zhao Y, et al. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 2019;56:662-92.

[3]

Li C, Luo W, Liu X, Xu D, He K. PMN-PT/PVDF nanocomposite for high output nanogenerator applications. Nanomaterials 2016;6:67.

[4]

Patra A, Pal A, Sen S. Polyvinylpyrrolidone modified barium zirconate titanate/polyvinylidene fluoride nanocomposites as self-powered sensor. Ceram Int 2018;44:11196-203.

[5]

Chen X, Li X, Shao J, An N, Tian H, Wang C, et al. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017;13:1604245.

[6]

Yu H, Huang T, Lu M, Mao M, Zhang Q, Wang H. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 2013;24:405401.

[7]

Abolhasani MM, Shirvanimoghaddam K, Naebe M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos Sci Technol 2017;138:49-56.

[8]

Paik H, Choi YY, Hong S, No K. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films. Sci Rep 2015;5:13209.

[9]

Park D, Kim K. Rational design of PVDF/BaTiO3 nanoparticle/Cu nanowire ternary nanocomposite films for optimal piezoelectric power generation. J Appl Phys 2021;130:204101.

[10]

Shi K, Sun B, Huang X, Jiang P. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 2018;52:153-62.

[11]

Berlincourt D, Jaffe H. Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev 1958;111:143-8.

[12]

Shin SH, Kim YH, Lee MH, Jung JY, Nah J. Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 2014;8:2766-73.

[13]

Zhao Y, Liao Q, Zhang G, Zhang Z, Liang Q, Liao X, et al. High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 2015;11:719-27.

[14]

Siddiqui S, Kim DI, Duy LT, Nguyen MT, Muhammad S, Yoon WS, et al. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 2015;15:177-85.

[15]

Shi K, Chai B, Zou H, Shen P, Sun B, Jiang P, et al. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy 2021;80:105515.

[16]

Yang Y, Pan H, Xie G, Jiang Y, Chen C, Su Y, et al. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens Actuators A Phys 2020;301:111789.

[17]

Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007;318:426-30.

[18]

Ryu JH, Messersmith PB, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces 2018;10:7523-40.

[19]

Liu L, Fu W, Wang L, Shan X. Dopamine-coated nano-SiO2-modified PVDF piezoelectric composite film. New J Chem 2021;45:11544-51.

[20]

Hanani Z, Izanzar I, Amjoud M, Mezzane D, Lahcini M, Uršič H, et al. Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting. Nano Energy 2021;81:105661.

[21]

Guan X, Xu B, Gong J. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2020;70:104516.

[22]

Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Méndez S. Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci 2012;47:1378-88.

[23]

Zhang R, Li L, Long S, Shen Y, Lou H, Wen F, et al. Linear and ferroelectric effects of BaTiO3 particle size on the energy storage performance of composite films with different polymer matrices. Ceram Int 2021;47:22155-63.

[24]

Wan C, Bowen CR. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J Mater Chem A 2017;5:3091-128.

[25]

Jia N, Xing Q, Xia G, Sun J, Song R, Huang W. Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater Lett 2015;139:212-5.

[26]

Gersappe D. Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 2002;89:058301.

[27]

Chan CM, Wu J, Li JX, Cheung YK. Polypropylene/calcium carbonate nanocomposites. Polymer 2002;43:2981-92.

[28]

Shuai C, Liu G, Yang Y, Yang W, He C, Wang G, et al. Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surf B Biointerfaces 2020;185:110587.

[29]

Ohigashi H, Akama S, Koga K. Lamellar and bulk single crystals grown in annealed films of vinylidene fluoride and trifluoroethylene copolymers. Jpn J Appl Phys 1988;27:2144-50.

[30]

Furukawa T. Structure and functional properties of ferroelectric polymers. Adv Colloid Interface Sci 1997;71(2):183-208.

[31]

Xie Y, Yu Y, Feng Y, Jiang W, Zhang Z. Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3. ACS Appl Mater Interfaces 2017;9:2995-3005.

[32]

Yin Y, Li H, Zhu L, Guo T, Li X, Xing W, et al. A durable mesh decorated with polydopamine/graphene oxide for highly efficient oil/water mixture separation. Appl Surf Sci 2019;479:351-9.

[33]

Yang D, Ruan M, Huang S, Wu Y, Li S, Wang H, et al. Dopamine and silane functionalized barium titanate with improved electromechanical properties for silicone dielectric elastomers. RSC Adv 2016;6:90172-83.

[34]

Zhang W, Kai Y, Lin J, Huang Y, Liu X. Enhancing dielectric and mechanical properties of poly(arylene ether nitrile) based composites by introducing low content “core-shell” like structured MXene&PDA@ BaTiO3. High Perform Polym 2021;33:1061-73.

[35]

Hsiang HI, Yen FS. Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. J Am Ceram Soc 1996;79:1053-60.

[36]

Zhu LF, Zhang BP, Zhao L, Li JF. High piezoelectricity of BaTiO3-CaTiO3-BaSnO3 lead-free ceramics. J Mater Chem C 2014;2:4764-71.

[37]

Hu P, Yan L, Zhao C, Zhang Y, Niu J. Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Compos Sci Technol 2018;168:327-35.

[38]

Gregorio Jr R, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci B Polym Phys 1994;32:859-70.

[39]

Ye S, Cheng C, Chen X, Chen X, Shao J, Zhang J, et al. High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 2019;60:701-14.

[40]

Wan X, Wang Z, Zhao X, Hu Q, Li Z, Wang ZL, et al. Flexible and highly piezoelectric nanofibers with organic–inorganic coaxial structure for self-powered physiological multimodal sensing. Chem Eng J 2023;451:139077.

[41]

Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 2016;116:4260-317.

[42]
Kremer F, Schönhals A. Broadband dielectric spectroscopy. first ed. Berlin: Springer-Verlag; 2003.
[43]

Tian G, Deng W, Yang T, Xiong D, Zhang H, Lan B, et al. Insight into interfacial polarization for enhancing piezoelectricity in ferroelectric nanocomposites. Small 2023;19:2207947.

[44]

Wang Z, Wang T, Wang C, Xiao Y, Jing P, Cui Y, et al. Poly(vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba(Fe0.5Ta0.5)O3, for high energy-storage density at low electric field. ACS Appl Mater Interfaces 2017;9:29130-9.

[45]

Lu X, Deng W, Wei J, Zhu Y, Ren P, Wan Y, et al. Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J Mater Sci 2021;56:19983-95.

[46]

Han P, Pang S, Fan J, Shen X, Pan T. Highly enhanced piezoelectric properties of PLZT/PVDF composite by tailoring the ceramic Curie temperature, particle size and volume fraction. Sens Actuators A Phys 2013;204:74-8.

[47]

Valiyaneerilakkal U, Varghese S. Poly (vinylidene fluoride-trifluoroethylene)/barium titanate nanocomposite for ferroelectric nonvolatile memory devices. AIP Adv 2013;3:042131.

[48]

Xie Y, Jiang W, Fu T, Liu J, Zhang Z, Wang S. Achieving high energy density and low loss in PVDF/BST nanodielectrics with enhanced structural homogeneity. ACS Appl Mater Interfaces 2018;10:29038-47.

[49]

Šutka A, Sherrell PC, Shepelin NA, Lapčinskis L, Mālnieks K, Ellis AV. Measuring piezoelectric output—fact or friction? Adv Mater 2020;32:2002979.

[50]

Zheng Q, Zhang H, Mi H, Cai Z, Ma Z, Gong S. High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy 2016;26:504-12.

[51]

Briscoe J, Jalali N, Woolliams P, Stewart M, Weaver PM, Cain M, et al. Measurement techniques for piezoelectric nanogenerators. Energy Environ Sci 2013;6:3035-45.

[52]

Park KI, Lee M, Liu Y, Moon S, Hwang GT, Zhu G, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 2012;24:2999-3004.

[53]

Zhang G, Liao Q, Ma M, Zhang Z, Si H, Liu S, et al. A rationally designed output current measurement procedure and comprehensive understanding of the output characteristics for piezoelectric nanogenerators. Nano Energy 2016;30:180-6.

[54]

Park SH, Lee HB, Yeon SM, Park J, Lee NK. Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Appl Mater Interfaces 2016;8:24773-81.

[55]

Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005;18. 3S–10S.

Journal of Materiomics
Pages 857-869
Cite this article:
Si H, Lee D, Park D, et al. Size effects of polydopamine-coated BaTiO3 nanoparticles on the piezoelectric performance of P(VDF-TrFE)/BaTiO3 composite. Journal of Materiomics, 2024, 10(4): 857-869. https://doi.org/10.1016/j.jmat.2023.10.006

153

Views

4

Crossref

2

Web of Science

3

Scopus

Altmetrics

Received: 27 July 2023
Revised: 04 September 2023
Accepted: 10 October 2023
Published: 05 November 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return