Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Luminescence thermometry is a reliable approach for remote thermal sensing, and extensive studies have been devoted to designing a luminescence thermometer with heightened thermal sensitivity. Herein, we report a promising luminescence thermometric material, Ta5+-substituted K0.5Na0.5NbO3:0.003Er3+ transparent ferroelectric ceramics. The temperature sensing sensitivity is significantly improved by adjusting the concentration of Ta5+ in the material. Specifically, utilizing the fluorescence intensity ratio from the 2H11/2 and 4S3/2 thermally coupled states of Er3+ as a detecting signal within the temperature range of 273–543 K, an optimal maximum absolute sensitivity of 0.0058 K–1 and relative sensitivity of 0.0158 K–1 are achieved for K0.5Na0.5NbO3: 0.65Ta5+/0.003Er3+. Simultaneously, as the concentration of Ta5+ increase, a unique evolution of structural phase transitions is observed from orthorhombic to tetragonal and then to cubic. This is accompanied by an improvement in luminescence temperature sensing properties, and the best sensitivity is demonstrated in the cubic-phase region. Intriguingly, a huge change in infrared luminescence properties as a function of temperature is found around the structure transition temperature of the samples. These results indicate a promising potential for achieving highly sensitive thermometry or monitoring phase structure transitions through luminescence thermometry behavior in the K0.5Na0.5NbO3 host.
Cao B, Wu J, Wang X, He Y, Feng Z, Dong B. Multiple temperature-sensing behavior of green and red upconversion emissions from Stark sublevels of Er3+. Sensors 2015;15(12):30981-90.
Kucsko G, Maurer P, Yao N, Kubo M, Noh H, Lo P, et al. Nanometre-scale thermometry in a living cell. Nature 2013;500(7460):54-8.
Zhu X, Feng W, Chang J, Tan Y, Li J, Chen M, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun 2016;7:10437.
Phan L, Lawson J, Davis F. Effects of elevated temperature exposure on heating characteristics, spailing, and residual properties of high performance concrete. Mater Struct 2001;34:83-91.
Mokhtar M, Owens K, Kwasny J, Taylor S, Basheer P, Cleland D, et al. Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring. IEEE Sensor J 2012;12(5):1470-6.
Ding M, Xu M, Chen D. A new non-contact self-calibrated optical thermometer based on Ce3+→Tb3+→Eu3+ energy transfer process. J Alloys Compd 2017;713:236-47.
Zhao Y, Wang X, Zhang Y, Li Y, Yao X. Optical temperature sensing of up-conversion luminescent materials: fundamentals and progress. J Alloys Compd 2020;817:152691.
Dramicanin M. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review. Methods Appl Fluoresc 2016;4(4):042001.
Chi F, Jiang B, Zhao Z, Chen Y, Wei X, Duan C, et al. Multimodal temperature sensing using Zn2GeO4:Mn2+ phosphor as highly sensitive luminescent thermometer. Sensor Actuat B–Chem 2019;296:126640.
Wang X, Liu Q, Bu Y, Liu C, Liu T, Yan X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv 2015;5(105):86219-36.
Chen D, Liu S, Zhou Y, Wan Z, Huang P, Ji Z. Dual-activator luminescence of RE/TM:Y3Al5O12(RE=Eu3+,Tb3+,Dy3+;TM=Mn4+,Cr3+) phosphors for self-referencing optical thermometry. J Mater Chem C 2016;4(38):9044-51.
Suo H, Zhao X, Zhang Z, Wang Y, Sun J, Jin M, et al. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photon Rev 2020;15(1):2000319.
Liu S, Cui J, Jia J, Fu J, You W, Zeng Q, et al. High sensitive Ln3+/Tm3+/Yb3+(Ln3+=Ho3+,Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceram Int 2019;45(1):1-10.
Quintanilla M, Henrikse M, Rener C, Liz L. Challenges for optical nanothermometry in biological environments. Chem Soc Rev 2022;51(11):4223-42.
Hu F, Lu S, Jiang Y, Wei R, Guo H, Yin M. Optical thermometry based on up-conversion luminescence behavior in BaGdF5:Er3+ glass ceramics. J Lumin 2020;220:116971.
Jia X, Zhang J, Gao Y, Wang J, Zheng P. Enhanced bipolar fatigue-resistance and optical temperature sensing in Er-modified 0.94(Bi0.5Na0.5)TiO3-0.06(K0.5Na0.5)NbO3 lead-free ceramics. Mater Res Bull 2017;89:11-5.
Pan H, Zhang J, Jia X, Xing H, He J, Wang J, et al. Large electrostrictive effect and high optical temperature sensing in Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.18Er0.02)TiO3 luminescent ferroelectrics. Ceram Int 2018;44(5):5785-9.
Wang L, Zhang J, Wang J, Yao Y, Ren L, Chen X, et al. Electro-and photon-induced cooling in BNT-BT-SBET relaxors with in situ optical temperature sensing. Opt Lett 2020;45(8):2391-4.
Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv Mater 2018;30(8):1705171.
Lv Y, Wang C, Zhang J, Wu L, Zhao M, Xu J. Tantalum influence on physical properties of (K0.5Na0.5)(Nb1-xTax)O3 ceramics. Mater Res Bull 2009;44(2):284-7.
Wu J, Xiao D, Wang Y, Wu W, Zhang B, Zhu J, et al. Microstructure and electrical properties of (Li,Ag,Ta,Sb)-modified (K0.5Na0.5)NbO3 lead-free ceramics with good temperature stability. J Phys D Appl Phys 2008;41(12):125405.
Wu J, Peng T, Wang Y, Xiao D, Zhu J, Jin Y, et al. Phase structure and electrical properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3 lead-free piezoelectric ceramics. J Am Ceram Soc 2007;91(1):319-21.
Guo Y, Kakimoto K, Ohsato H. (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater Lett 2005;59(23):241-4.
Hollenstein E, Davis M, Damjanovic D, Setter N. Piezoelectric properties of Li-and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 2005;87(18):182905.
Jia Q, Zhang Q, Sun H, Hao X. High transmittance and optical storage behaviors in Tb3+ doped K0.5Na0.5NbO3-based ferroelectric materials. J Eur Ceram Soc 2021;41(2):1211-20.
Hu B, Pan Z, Dai M, Guo F, Ning H, Gu Z, et al. Photoluminescence and temperature dependent electrical properties of Er-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J Am Ceram Soc 2014;97(12):3877-82.
Lin J, Wang P, Wang H, Shi Y, Zhu K, Yan F, et al. Significantly photo-thermochromic KNN-based “smart window” for sustainable optical data storage and anti-counterfeiting. Adv Opt Mater 2021;9(17):2100580.
Lin D, Kwok K, Chan H. Microstructure, phase transition, and electrical properties of (K0.5Na0.5)Li(NbTa)O3 lead-free piezoelectric ceramics. J Appl Phys 2007;102(3):034102.
Zhang Q, Luo L, Gong J, Du P, Li W, Yuan G. Photoluminescence, thermoluminescence and reversible photoluminescence modulation of multifunctional optical materials Pr3+ doped KNaNbO3 ferroelectric ceramics. J Eur Ceram Soc 2020;40(12):3946-55.
Fu J, Zuo R, Lv D, Liu Y, Wu Y. Structure and piezoelectric properties of lead-free (Na0.52K)(NbSb0.05)OLiTaO3 ceramics. J Mater Sci 2009;21(3):241-5.
Akdoğan E, Kerman K, Abazari M, Safari A. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl Phys Lett 2008;92(11):112908.
Du J, Zang G, Yi X, Xu Z, Chu R, Ban C, et al. Structural, dielectric and piezoelectric features of (Na0.52K0.44Li0.04)Nb0.87Sb0.08Ta0.05O3 ceramics. Mater Lett 2012;79:89-91.
Chen B, Wang B, Jing Z, Wang H, Tu B, Wang W, et al. Linear response for temperature sensing achieved by implanting Er3+ into the grain boundary of transparent MgAlON ceramic. Scripta Mater 2023;231:115467.
Yang Z, Du J, Martin L, Poelman D. Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics. J Eur Ceram Soc 2021;41(3):1925-33.
Ye Y, Lu K, Q J. Developing smart temperature sensing window based on highly transparent rare-earth doped yttrium zirconate ceramics. ACS Appl Mater Interfaces 2022;14(34):39072-80.
Zhou Y, Wang P, Lin J, Lu Q, Wu X, Gao M, et al. High-contrast photochromic Eu-doped K0.5Na0.5NbO3 ceramics with prominent pellucidity. Dalton Trans 2021;50(14):4914-22.
Jia Q, Zhang Q, Sun H, Li Y, Hao X. Multicolor and multimode luminescent modulation via energy transfer engineering in Tb3+/Eu3+ co-doped (K0.5Na0.5)NbO3 transparent photochromic materials. J Alloys Compd 2021;873:159852.
Baishya K, Ray J, Dutta P, Das P, Das S. Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation. Appl Phys A 2018;124(10):704.
Zhang X, Yang D, Yang Z, Zhao X, Chai Q, Chao X, et al. Transparency of K0.5N0.5NbO3-Sr(Mg1/3Nb2/3)O3 lead-free ceramics modulated by relaxor behavior and grain size. Ceram Int 2016;42(16):17963-71.
Lin J, Zhai J, Wu X, Shen B, Ye H, Wang H. Simultaneously improved transparency, photochromic contrast and Curie temperatureviarare-earth ion modification in KNN-based ceramics. Inorg Chem Front 2021;8(8):2027-35.
Lin D, Kwok K, Chan H. Phase transition and electrical properties of (K0.5Na0.5)(NbTa)O3 lead-free piezoelectric ceramics. Appl Phys A 2008;91(1):167-71.
Wang Q, Wu H, Zhang L, Wu H, Luo Y, Pan G, et al. Green upconversion luminescence of Er3+ and Yb3+ codoped Gd2Mo4O15 for optical temperature sensing. J Alloys Compd 2022;895:162516.
Xu J, Murata D, Katayama Y, Ueda J, Tanabe S. Cr3+/Er3+ co-doped LaAlO3 perovskite phosphor: a near-infrared persistent luminescence probe covering the first and third biological windows. J Mater Chem B 2017;5(31):6385-93.
Li L, Wu H. Host composition dependent tuneable morphology and luminescent property of the CaSrBaWO4:RE3+ (RE=Pr, Ho, and Er) phosphors. J Alloys Compd 2017;702:106-19.
Tanabe S, Ohyagi T, Todoroki S, Hanada T, Soga N. Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses. J Appl Phys 1993;73(12):8451-4.
Yao Y, Luo L, Li W, Zhou J, Wang F. An intuitive method to probe phase structure by upconversion photoluminescence of Er3+ doped in ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3. Appl Phys Lett 2015;106(8):082906.
Judd B. Optical absorption intensities of rare-earth ions. Phys Rev 1962;127(3):750-61.
Yang J, Dai S, Dai N, Xu S, Wen L, Hu L, et al. Effect of Bi2O3 on the spectroscopic properties of erbium-doped bismuth silicate glasses. J Opt Soc Am B 2003;20(5):810-5.
Gao Y, Nie Q, Xu T, Shen X. Thermal stability, Judd-Ofelt theory analysis and spectroscopic properties of a new Er3+/Yb3+-codoped germano-tellurite glass. Spectrochim Acta 2005;61(13–14):2822-6.
Yang D, Wei L, Chao X, Yang Z, Zhou X. First-principles calculation of the effects of Li-doping on the structure and piezoelectricity of (K0.5Na0.5)NbO3 lead-free ceramics. Phys Chem Chem Phys 2016;18(11):7702-6.
Lin C, Wu X, Lin M, Huang Y, Li J. Optical, luminescent and optical temperature sensing properties of (K0.5Na0.5)NbO3-ErBiO3 transparent ceramics. J Alloys Compd 2017;706:156-63.
Back M, Ueda J, Xu J, Murata D, Brik M, Tanabe S. Ratiometric luminescent thermometers with a customized phase-transition-driven fingerprint in perovskite oxides. ACS Appl Mater Interfaces 2019;11(42):38937-45.
Runowski M, Bartkowiak A, Majewska M, Martín I, Lis S. Upconverting lanthanide doped fluoride NaLuF4:Yb3+-Er3+-Ho3+ optical sensor for multi-range fluorescence intensity ratio (FIR) thermometry in visible and NIR regions. J Lumin 2018;201:104-9.
Vijaya N, Babu P, Venkatramu V, Jayasankar C, León–Luis S, Rodríguez–Mendoza U, et al. Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors. Sensor Actuat B–Chem 2013;186:156-64.
Ran W, Noh H, Park S, Choi B, Kim J, Jeong J, et al. Infrared excited Er3+/Yb3+ codoped NaLaMgWO6 phosphors with intense green up-conversion luminescence and excellent temperature sensing performance. Dalton Trans 2019;48(30):11382-90.
Zhou P, Yu F, Zeng X, Gao M, Zhao C, Lin C, et al. Phase transition monitoring and temperature sensing via FIR technology in Bi/Sm-codoped KNN transparent ceramics. J Am Ceram Soc 2023:1-9.
Du P, Luo L, Li W, Yue Q, Chen H. Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic. Appl Phys Lett 2014;104(15):152902.
Wang X, Liu C, Yan X. Optical temperature sensing of hexagonal Na0.82Ca0.08Er0.16Y0.853F4 phosphor. RSC Adv 2014;4(46):24170-5.
Du P, Su–Yu J. Effect of molybdenum on upconversion emission and temperature sensing properties in Na0.5Bi0.5TiO3:Er/Yb ceramics. Ceram Int 2015;41(5):6710-4.
Cheng X, Yang K, Wang J, Yang L, Cheng X. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material. Opt Mater 2016;58:449-53.
Kumar V, Som S, Dutta S, Das S, Swart H. Influence of Ho3+ doping on the temperature sensing behavior of Er3+-Yb3+ doped La2CaZnO5 phosphor. RSC Adv 2016;6(88):84914-25.
Singh D, Manam J. Efficient dual emission mode of green emitting perovskite BaTiO3: Er3+ phosphors for display and temperature sensing applications. Ceram Int 2018;44(9):10912-20.
Wang X, Wang Y, Jin L, Bu Y, Yang X, Yan X. Controlling optical temperature detection of Ca3Al2O6: Yb3+,Er3+ phosphors through doping. J Alloys Compd 2019;773:393-400.
Voiculescu A, Hau S, Stanciu G, Avram D, Gheorghe C. Optical thermometry through infrared excited green upconversion emissions of Er3+-Yb3+ co-doped LaAlO3 phosphors. J Lumin 2022;242:118602.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).