AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Enhanced piezoelectric properties and thermal stability of LiNbO3-modified PNN–PZT ceramics

Wei Penga,( )Jianglei ChangaJianwei ZhaobDawei Wangb,c,( )Zhen LiudGenshui WangdShuxiang Donga,( )
Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Piezoelectric PZT ceramics with high piezoelectric properties and good thermal stability are urgently desired concerning the practical application. New compositions of LiNbO3 modified Pb(Ni1/3Nb2/3)O3PbZrO3PbTiO3 ceramics have been prepared in this study. The effects of the introduction of the LiNbO3 on the system were comprehensively investigated in terms of the phase structure, microstructure, electric properties, and thermal stability behavior of the ceramics. All compositions are located in the morphotropic phase boundary (MPB) region, and the ratio of the rhombohedral (R) phase increases obviously with the increase of LiNbO3 concentration. With increasing the LiNbO3 content, the piezoelectric properties were significantly enhanced. The sample added with 2% (in mole) LiNbO3 shows excellent electric properties, including Tm = 185 ℃, εr= 5,643, kp = 0.626, Qm = 51, d33 = 902 pC/N. More importantly, no thermal depolarization behavior was observed in the temperature range of 25–100 ℃. For PNN-PZT-x%LN ceramics, which is mainly attributed to the pinning effect resulted by the (Li'Pb - NbZr=Ti·) defect dipoles.

References

[1]

Li F, Lin D, Chen Z, Cheng Z, Wang J, Li C, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat Mater 2018;17(4):349-54.

[2]

Bian L, Qi X, Li K, Yu Y, Liu L, Chang Y, et al. High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices. Adv Funct Mater 2020;30(25):1-7.

[3]

Bian L, Qi X, Li K, Fan J, Li Z, Sun E, et al. High-performance Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with the triple point composition. J Eur Ceram Soc 2021;41(14):6983-90.

[4]

Guo Q, Li F, Xia F, Gao X, Wang P, Hao H, et al. High-performance Sm-doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-based piezoceramics. ACS Appl Mater Interfaces 2019;11(46):43359-67.

[5]

Guo Q, Li F, Xia F, Wang P, Gao X, Hao H, et al. Piezoelectric ceramics with high piezoelectricity and broad temperature usage range. J Materiomics 2021;7(4):683-92.

[6]

Wang D, Cao M, Zhang S. Phase diagram and properties of Pb(In1/2Nb1/2)O3- Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics. J Eur Ceram Soc 2012;32(2):433-9.

[7]

Wang D, Cao M, Zhang S. Investigation of ternary system PbHfO3-PbTiO3-Pb (Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J Am Ceram Soc 2012;95(10):3220-8.

[8]

Gao X, Wu J, Yu Y, Chu Z, Shi H, Dong S. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting. Adv Funct Mater 2018;28(30):1-8.

[9]

Gao X, Yan Y, Carazo AV, Dong S, Priya S. Low-temperature co-fired unipoled multilayer piezoelectric transformers. IEEE Trans Ultrason Ferroelectrics Freq Control 2018;65(3):513-9.

[10]

Yu Z, Yang J, Cao J, Bian L, Li Z, Yuan X, et al. A PMNN- PZT piezoceramic based magneto-mechano-electric coupled energy harvester. Adv Funct Mater 2022;32(25):2111140.

[11]

Li Z, Bian L, Yi X, Zhu R, Yuan X, Dong S. A co-fired multilayer PMnS-PZT ceramic based linear piezoelectric ultrasonic micromotor with a high-load-density. Appl Phys Lett 2022;120(8):08292.

[12]

Zhang Q, Pang X, Zhang Z, Su M, Hong J, Zheng H, et al. Miniature transducer using PNN-PZT-based ceramic for intravascular ultrasound. IEEE Trans Ultrason Ferroelectrics Freq Control 2019;66(6):1102-9.

[13]

Guo F, Zhang S, Long W, Fang P, Li X, Xi Z. SnO2 modified PNN-PZT ceramics with ultra-high piezoelectric and dielectric properties. Ceram Int 2022;48(16):23241-8.

[14]

Wang S, Li X, Wang J, Wu X, Li L, Zhang J, et al. Enhanced electromechanical properties in MnCO3-modified Pb(Ni,Nb)O3–PbZrO3–PbTiO3 ceramics via defect and domain engineering. J Am Ceram Soc 2023;106(3):1970-80.

[15]

Wang H, Zhang F, Chen Y, Huang C, Wang X, Wu X, et al. Giant piezoelectric coefficient of PNN-PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB. Ceram Int 2021;47(9):12284-91.

[16]

Pu T, Chen H, Xing J, Luo Y, Fan S, Liu H, et al. High piezoelectricity of low-temperature sintered Li2CO3-added PNN–PZT relaxor ferroelectrics. J Mater Sci Mater 2022;33(8):4819-30.

[17]

Guo F, Zhang S, Qiu R, Bai W, Zhou H, Chen Y, et al. Dramatical improvement in temperature stability of ZnO modified PNN-PZT ceramics via synergistic effect of doping and composite. Ceram Int 2023;49(11):18878-84.

[18]

Bian L, Kou Q, Liu L, Zheng H, Wang N, Qi X, et al. Enhancing the temperature stability of 0.42PNN-0.21PZ-0.37PT ceramics through texture engineering. ACS Appl Mater Interfaces 2022;14(2):3076-308.

[19]

Du J, Qiu J, Zhu K, Ji H, Pang X, Luo J. Effects of Fe2O3 doping on the microstructure and piezoelectric properties of 0.55Pb(Ni1/3Nb2/3)O3–0.45Pb(Zr0.3Ti0.7)O3 ceramics. Mater Lett 2012;66(1):153-5.

[20]

Liu H, Nie R, Yue Y, Zhang Q, Chen Q, Zhu J, et al. Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric proper- ties of PNN–PZT ceramics. Ceram Int 2015;41(9):11359-64.

[21]

Gao X, Jin H, Xin B, Wang M, Dong S, Xu Z, et al. Low temperature sintering of Li2CO3 added Pb(Ni1/3Nb2/3)-Pb(Zr,Ti)O3 ceramics with high piezoelectric properties. J Alloys Compd 2022;892:162132.

[22]

Cheng C, Zheng D, Peng G, Hu S, Zhang H, Zhang J. The effects of Sm2O3 doping on properties of PNN–PZT ceramics near morphotropic phase boundary. J Mater Sci Mater 2017;28(2):1624-30.

[23]

Zhang Y, Qi H, Sun S, Liu Y, Gao B, Wang L, et al. Ultrahigh piezoelectric performance benefiting from quasi-isotropic local polarization distribution in complex lead-based perovskite. Nano Energy 2022;104:107910.

[24]

Bian L, Zhu K, Wang Q, Ma J, Fan J, Qi X, et al. Performance enhancement of ultrasonic transducer made of textured PNN-PZT ceramic. J Adv Dielectr 2022;12(4):1-7.

[25]

Liu W, Zheng T, Ruan X, Man Z, Xue H, Jiang L, et al. Synergy of lead vacancies and morphotropic phase boundary to promote high piezoelectricity and temperature stability of PBZTN ceramics. J Mater Sci Technol 2023;137:1-7.

[26]

Wang D, Cao M, Zhang S. Investigation of ternary system Pb(Sn,Ti)O3-Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J Eur Ceram Soc 2012;32(2):441-8.

[27]

Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115(7):2559-95.

[28]

Fang M, Rajput S, Dai Z, Ji Y, Hao Y, Ren X. Understanding the mechanism of thermal-stable high-performance piezoelectricity. Acta Mater 2019;169:155-61.

[29]

Dong Y, Zhou Z, Liang R, Dong X. Excellent piezoelectric constant and thermal stability in BiScO3–PbTiO3 piezoelectric ceramics via domain engineering. J Materiomics 2022;8(2):319-26.

[30]

Riemer LM, Lalitha KV, Jiang X, Liu N, Dietz C, Stark RW, et al. Stress-induced phase transition in lead-free relaxor ferroelectric composites. Acta Mater 2017;136:271-80.

[31]

Yang S, Li J, Liu Y, Wang M, Qiao L, Gao X, et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nat Commun 2021;12(1):1-10.

[32]

Yin D, Zhao Z, Dai Y, Zhao Z, Zhang X, Wang S. Electrical properties and relaxor phase evolution of Li-modified BNT-BKT-BT lead-free ceramics. J Am Ceram Soc 2016;99(7):2354-60.

[33]

Ichangi A, Shvartsman VV, Lupascu DC, Lê K, Grosch M, Kathrin Schmidt-Verma AC, et al. Li and Ta-modified KNN piezoceramic fibers for vibrational energy harvesters. J Eur Ceram Soc 2021;41(15):7662-9.

[34]

Ren X, Peng Z, Chen B, Shi Q, Qiao X, Wu D, et al. A compromise between piezoelectricity and transparency in KNN-based ceramics: the dual functions of Li2O addition. J Eur Ceram Soc 2020;40(6):2331-7.

[35]

Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B Condens Matter 1993;192(1–2):55-69.

[36]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44(6):1272-6.

[37]

Cheng M, Zhao M, Zhang S, Yan Y, Li Z, Wang P, et al. Improved piezoelectricity of lead-based PNN-PIN-PT ternary ceramics via polymorphic nanodomain modulation. J Eur Ceram Soc 2023;43(12):5231-40.

[38]

Liu Y, Yang J, Deng S, Zhang Y, Zhang Y, Sun S, et al. Flexible polarization configuration in high-entropy piezoelectrics with high performance. Acta Mater 2022;236:118115.

[39]

Guo Q, Hou L, Li F, Xia F, Wang P, Hao H, et al. Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J Am Ceram Soc 2019;102(12):7428-35.

[40]

Moriana AD, Zhang S. Determining the effects of BaTiO3 template alignment on template grain growth of Pb(Mg1/3Nb2/3)O3–PbTiO3 and effects on piezoelectric properties. J Eur Ceram Soc 2022;42(6):2752-63.

[41]

Chen Y, Zhang X, Pan J, Chen K. Study of the structure and electrical properties of PMN-PNN-PT ceramics near the morphotropic phase boundary. J Electroceram 2006;16(2):109-14.2006.

Journal of Materiomics
Pages 995-1003
Cite this article:
Peng W, Chang J, Zhao J, et al. Enhanced piezoelectric properties and thermal stability of LiNbO3-modified PNN–PZT ceramics. Journal of Materiomics, 2024, 10(5): 995-1003. https://doi.org/10.1016/j.jmat.2023.10.013

131

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 03 August 2023
Revised: 13 October 2023
Accepted: 28 October 2023
Published: 22 November 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return