AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Rattling-like behavior and band convergence induced ultra-low lattice thermal conductivity in MgAl2Te4 monolayer

Da WanaShulin BaiaXiaodong LiaJingyi ZhangaPeng AiaWanrong GuoaShuwei Tanga,b( )
College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000, China
Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Inspired by the excellent stability exhibited by experimentally synthesized two-dimensional (2D) MoSi2N4 layered material, the thermal and electronic transport, and thermoelectric (TE) properties of MgAl2Te4 monolayer are systematically investigated using the First-principles calculations and Boltzmann transport theory. The mechanical stability, dynamic stability, and thermal stability (900 K) of the MgAl2Te4 monolayer are demonstrated, respectively. The MgAl2Te4 monolayer exhibits a bandgap of 1.35 eV using the HSE06 functional in combination with spin-orbit coupling (SOC) effect. Band convergence in the valence band is favorable to improve the thermoelectric properties. The rattling thermal damping effect caused by the weak bonding of MgTe bonds in MgAl2Te4 monolayer leads to ultra-low lattice thermal conductivity (0.95/0.38 W/(m·K)@300 K along the x-/y-direction), which is further demonstrated by the phonon group velocities, phonon relaxation time, Grüneisen parameters, and scattering mechanisms. The optimal zT of 3.28 at 900 K is achieved for the p-type MgAl2Te4 monolayer, showing the great promising prospect for the excellent p-type thermoelectric material. Our current work not only reveals the underlying mechanisms responsible for the excellent TE properties, but also elaborates on the promising thermoelectric application of MgAl2Te4 monolayer material at high temperature.

References

[1]

Tan G, Zhao L-D, Mercouri GK. Rationally designing high-performance bulk thermoelectric materials. Chem Rev 2016;116:12123-49.

[2]

Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev 2020;120:7399-515.

[3]

Disalvo FJ. Thermoelectric cooling and power generation. Science 1999;285:703-6.

[4]

Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7:105-14.

[5]

Daniels LM, Savvin SN, Pitcher MJ, Dyer MS, Claridge JB, Ling S, et al. Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides. Energy Environ Sci 2017;10:1917-22.

[6]

Đ Dangić, Hellman O, Fahy S, Savić I. The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe. npj Comput Mater 2021;7:57.

[7]

Yuan K, Zhang X, Chang Z, Tang D, Hu M. Antibonding induced anharmonicity leading to ultralow lattice thermal conductivity and extraordinary thermoelectric performance in CsK2X (X = Sb, Bi). J Mater Chem C 2022;10:15822-32.

[8]

Chang Z, Zheng J, Jing Y, Li W, Yuan K, Ma J, et al. Novel insights into lattice thermal transport in nanocrystalline Mg3Sb2 from first principles: the crucial role of higher-order phonon scattering. Phys Chem Chem Phys 2022;24:20891-900.

[9]

Bai S, Tang S, Wu M, Luo D, Zhang J, Wan D, et al. Unravelling the thermoelectric properties and suppression of bipolar effect under strain engineering for the asymmetric Janus SnSSe and PbSSe monolayers. Appl Surf Sci 2022;599:153962.

[10]

Bai S, Tang S, Wu M, Luo D, Zhang J, Wan D, et al. Chromium ditelluride monolayer: a novel promising 2H phase thermoelectric material with direct bandgap and ultralow lattice thermal conductivity. J Alloys Compd 2023;930:167485.

[11]

Liu D, Qin B, Zhao L-D. SnSe/SnS: multifunctions beyond thermoelectricity. Mater Lab 2022;1:220006.

[12]

Wu X, Huang J, Zhou Z, Han Z, Jiang F, Li H, et al. Mg3Sb2-based thermoelectrics: materials, interfaces, and devices. Mater Lab 2023;2:23003.

[13]

Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G, et al. Multiple converged conduction bands in K2Bi8Se13: a promising thermoelectric material with extremely low thermal conductivity. J Am Chem Soc 2016;138:16364-71.

[14]

Jiang B, Qiu P, Chen H, Huang J, Mao T, Wang Y, et al. Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials. Mater Today Phys 2018;5:20-8.

[15]

Li W, Lin S, Weiss M, Chen Z, Li J, Xu Y, et al. Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Adv Energy Mater 2018;8:1800030.

[16]

Yu F, Meng X, Cheng J, Liu J, Yao Y, Li J. Novel n-type thermoelectric material of ZnIn2Se4. J Alloys Compd 2019;797:940-4.

[17]

Bai S, Wu M, Zhang J, Luo D, Wan D, Li X, et al. Stacking pattern induced high ZTs in monolayer SnSSe and bilayer SnXY (X/Y = S, Se) materials with strong anharmonic phonon scattering. Chem Eng J 2023;55:140832.

[18]

Tang S, Wu M, Bai S, Luo D, Zhang J, Wan D, et al. SnSe2 monolayer with square lattice structure: a promising p-type thermoelectric material with an indirect bandgap and low lattice thermal conductivity. J Mater Chem C 2022;10:16116-25.

[19]

Bai S, Zhang X, Zhao L-D. Rethinking SnSe thermoelectrics from computational materials science. Acc Chem Res 2023;56:3065-75.

[20]

Zhou Z, Liu HJ, Fan DD, Cao GH, Sheng CY. High thermoelectric performance in the hexagonal bilayer structure consisting of light boron and phosphorus elements. Phys Rev B 2019;99:085410.

[21]

Tang S, Bai S, Wu M, Luo D, Zhang J, Sun W, et al. Low-cost pentagonal NiX2 (X = S, Se, and Te) monolayers with strong anisotropy as potential thermoelectric materials. Phys Chem Chem Phys 2022;24:5185-98.

[22]

Bai S, Zhang J, Wu M, Luo D, Wan D, Li X, et al. Theoretical prediction of thermoelectric performance for layered LaAgOX (X = S, Se) materials in consideration of the four-phonon and multiple carrier scattering processes. Small Methods 2023;7:2201368.

[23]

Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014;508:373-7.

[24]

Toprak MS, Stiewe C, Platzek D, Williams S, Bertini L, Müller E, et al. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv Funct Mater 2004;14:1189-96.

[25]

Romano G, Kolpak AM, Carrete J, Broido D. Parameter-free model to estimate thermal conductivity in nanostructured materials. Phys Rev B 2019;100:045310.

[26]

Niedziela JL, Bansal D, Ding J, Lanigan-Atkins T, Li C, May AF, et al. Controlling phonon lifetimes via sublattice disordering in AgBiSe2. Phys Rev Mater 2020;4:105402.

[27]

Wu Y, Hou B, Ma C, Cao J, Chen Y, Lu Z, et al. Thermoelectric performance of 2D materials: the band-convergence strategy and strong intervalley scatterings. Mater Horiz 2021;8:1253-63.

[28]

Zhang A-X, Liu J-T, Guo S-D, Li H-C. Strain effects on phonon transport in antimonene investigated using a first-principles study. Phys Chem Chem Phys 2017;19:14520-6.

[29]

Tang S, Bai S, Wu M, Luo D, Zhang J, Wang D, et al. Improving thermoelectric performance of asymmetrical Janus 1T-SnSSe monolayer by the synergistic effect of band convergence and crystal lattice softening under strain engineering. Mater Today Phys 2022;29:100923.

[30]

Hong Y-L, Liu Z, Wang L, Zhou T, Ma W, Xu C, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020;369:670-4.

[31]

Li Q, Zhou W, Wan X, Zhou J. Strain effects on monolayer MoSi2N4: ideal strength and failure mechanism. Physica E Low Dimens Syst Nanostruct 2021;131:114753.

[32]

Li S, Wu W, Feng X, Guan S, Feng W, Yao Y, et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4 and MoSi2As4. Phys Rev B 2020;102:235435.

[33]

Bafekry A, Stampfl C, Naseri M, Fadlallah MM, Faraji M, Ghergherehchi M, et al. Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer: a first-principles calculation. J Appl Phys 2021;129:155103.

[34]

Novoselov KS. Discovery of 2D van der Waals layered MoSi2N4 family. Natl Sci Rev 2020;7:1842-4.

[35]

Li P, Zhang W, Liang C, Zeng XC. Two-dimensional MgX2Se4 (X = Al, Ga) monolayers with tunable electronic properties for optoelectronic and photocatalytic applications. Nanoscale 2019;11:19806-13.

[36]

Fang W, Kuang K, Xiao X, Wei H, Chen Y, Li M, et al. Ab initio study of two-dimensional MgAl2Se4 and MgIn2Se4 with high stability, high electron mobility, and high thermoelectric figure of merit. J Alloys Compd 2023;931:167586.

[37]

Oh SK, Song HJ, Kim WT, Kim HG, Lee CI, Park TY, et al. Impurity optical absorption of Co2+-doped MgAl2S4 and CaAl2S4 single crystals. J Phys Chem Solid 2000;61:1243-7.

[38]

Cao L, Zhou G, Wang Q, Ang LK, Ang YS. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl Phys Lett 2021;118:013106.

[39]

Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev AV, Zhuang X. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 2021;82:105716.

[40]

Wang L, Shi Y, Liu M, Zhang A, Hong Y-L, Li R, et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat Commun 2021;12:2361.

[41]

Huang HH, Fan X, Zheng WT, Singh DJ. Improved thermoelectric transport properties of Ge4Se3Te through dimensionality reduction. J Mater Chem C 2021;9:1804-13.

[42]

Huang S, Wang Z, Xiong R, Yu H, Shi J. Significant enhancement in thermoelectric performance of Mg3Sb2 from bulk to two-dimensional mono layer. Nano Energy 2019;62:212-9.

[43]

Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials. Adv Funct Mater 2017;27:1604145.

[44]

Jiang G, He J, Zhu T, Fu C, Liu X, Hu L, et al. High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties. Adv Funct Mater 2014;24:3776-81.

[45]

Yang J, Li G, Zhu H, Chen N, Lu T, Gao J, et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material. Joule 2022;6:193-204.

[46]

Zhou Z, Han G, Lu X, Wang G, Zhou X. High-performance magnesium-based thermoelectric materials: progress and challenges. J Magnes Alloy 2022;10:1719-36.

[47]

Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 2008;29:2044-78.

[48]

Tao J, Perdew JP, Tang H, Shahi C. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures. J Chem Phys 2018;148:074110.

[49]

Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 1994;49:16223-33.

[50]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-P. J Chem Phys 2010;132:154104.

[51]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003;118:8207-15.

[52]

Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater 2015;108:1-5.

[53]

Baroni S, Gironcoli S, Corso A Dal, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001;73:515-62.

[54]

Li W, Carrete J, Katcho NA, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput Phys Commun 2014;185:1747-58.

[55]

Li X, Zhang Z, Xi J, Singh DJ, Sheng Y, Yang J, et al. TransOpt. A code to solve electrical transport properties of semiconductors in constant electron–phonon coupling approximation. Comput Mater Sci 2021;186:110074.

[56]

Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. npj Comput Mater 2016;2:15015.

[57]

Xi J, Wang D, Yi Y, Shuai Z. Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. J Chem Phys 2014;141:034704.

[58]

Dronskowski R, Bloechl PE. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 1993;97:8617-24.

[59]

Deringer VL, Tchougréeff AL, Dronskowski R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 2011;115:5461-6.

[60]

Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem 2016;37:1030-5.

[61]

Konze PM, Dronskowski R, Deringer VL. Exploring chemical bonding in phase-change materials with orbital-based indicators. Phys Status Solidi Rapid Res Lett 2019;13:1800579.

[62]

Tuckerman ME, Ungar PJ, Rosenvinge T von, Klein ML. Ab initio molecular dynamics simulations. J Phys Chem 1996;100:12878-87.

[63]

Tang S, Wu M, Bai S, Luo D, Zhang J, Yang S. Honeycomb-like puckered PbTe monolayer: a promising n-type thermoelectric material with ultralow lattice thermal conductivity. J Alloys Compd 2022;907:164439.

[64]

Tang S, Bai S, Wu M, Luo D, Wang D, Yang S, et al. Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: a first-principles prediction. Mater Today Energy 2022;23:100914.

[65]

Wang V, Xu N, Liu J-C, Tang G, Geng W-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 2021;267:108033.

[66]

Dai J, Wu X, Yang J, Zeng XC. Porous boron nitride with tunable pore size. J Phys Chem Lett 2014;5:393-8.

[67]

Cadelano E, Palla PL, Giordano S, Colombo L. Elastic properties of hydrogenated graphene. Phys Rev B 2010;82:235414.

[68]

Kim W. Strategies for engineering phonon transport in thermoelectrics. J Mater Chem C 2015;3:10336-48.

[69]

Dastider AG, Rasul A, Rahman E, Alam M. Effect of vacancy defects on the electronic and mechanical properties of two-dimensional MoSi2N4. RSC Adv 2023;13:5307-16.

[70]

Li T. Ideal strength and phonon instability in single-layer MoS2. Phys Rev B 2012;85:235407.

[71]

Kudin KN, Scuseria GE, Yakobson BI. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 2001;64:235406.

[72]

Xu J, Chen A, Yu L, Wei D, Tian Q, Wang H, et al. The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap. Nanoscale 2022;14:17401-8.

[73]

Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, Schnering HG. Electron localization in solid-state structures of the elements: the diamond structure. Angew Chem Int Ed 1992;31:187-8.

[74]

Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 2009;21:084204.

[75]

Sanville E, Kenny SD, Smith R, Henkelman G. Improved grid-based algorithm for Bader charge allocation. J Comput Chem 2007;28:899-908.

[76]

Wang D, He W, Chang C, Wang G, Wang J, Zhao L-D. Thermoelectric transport properties of rock-salt SnSe: first-principles investigation. J Mater Chem C 2018;6:12016-22.

[77]

Froyen S, Harrison WA. Elementary prediction of linear combination of atomic orbitals matrix elements. Phys Rev B 1979;20:2420-2.

[78]

Peng B, Zhang H, Shao H, Xu K, Ni G, Li J, et al. Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene. J Mater Chem A 2018;6:2018-33.

[79]

Qiu W, Wu L, Ke X, Yang J, Zhang W. Diverse lattice dynamics in ternary Cu-Sb-Se compounds. Sci Rep 2015;5:13643.

[80]

Yang D, Yao W, Yan Y, Qiu W, Guo L, Lu X, et al. Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3. NPG Asia Mater 2017;9 e387-e387.

[81]

Zhou W-X, Cheng Y, Chen KQ, Xie G, Wang T, Zhang G. Thermal conductivity of amorphous materials. Adv Funct Mater 2020;30:1903829.

[82]

Wang FQ, Zhang S, Yu J, Wang Q. Thermoelectric properties of single-layered SnSe sheet. Nanoscale 2015;7:15962-70.

[83]

Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird's eye view. MRS Bull 2006;31:188-98.

[84]

Huang HH, Xing G, Fan X, Singh DJ, Zheng WT. Layered Tl2O: a model thermoelectric material. J Mater Chem C 2019;7:5094-103.

[85]

Zhu X-L, Yang H, Zhou W-X, Wang B, Xu N, Xie G. KAgX (X = S, Se): high-performance layered thermoelectric materials for medium-temperature applications. ACS Appl Mater Interfaces 2020;12:36102-9.

[86]

Shen Y, Wang FQ, Wang Q. Ultralow thermal conductivity and negative thermal expansion of CuSCN. Nano Energy 2020;73:104822.

[87]

Hou L, Li W-D, Wang F, Eriksson O, Wang B-T. Structural, electronic, and thermodynamic properties of curium dioxide: density functional theory calculations. Phys Rev B 2017;96:235137.

[88]

Khandy SA. Inspecting the electronic structure and thermoelectric power factor of novel p-type half-Heuslers. Sci Rep 2021;11:20756.

[89]

Kumar S, Schwingenschlögl U. Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chem Mater 2015;27:1278-84.

[90]

Kim H-S, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coefficient measurement. Apl Mater 2015;3:041506.

[91]

Govindaraj P, Murugan K, Venugopal K. Role of lattice thermal conductivity in thermoelectric properties of chalcopyrite-type antimonides XSiSb2 (X = Mg, Be): a DFT insight. Mater Chem Phys 2023;295:127190.

[92]

Gao Z, Wang J-S. Thermoelectric penta-silicene with a high room-temperature figure of merit. ACS Appl Mater Interfaces 2020;12:14298-307.

Journal of Materiomics
Pages 1004-1016
Cite this article:
Wan D, Bai S, Li X, et al. Rattling-like behavior and band convergence induced ultra-low lattice thermal conductivity in MgAl2Te4 monolayer. Journal of Materiomics, 2024, 10(5): 1004-1016. https://doi.org/10.1016/j.jmat.2023.11.001

272

Views

6

Crossref

8

Web of Science

7

Scopus

Altmetrics

Received: 06 September 2023
Revised: 16 October 2023
Accepted: 01 November 2023
Published: 23 November 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return