AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Thermal conductivity suppression in uranium-doped thorium dioxide due to phonon-spin interactions

Zilong Huaa,( )Saqeeb AdnanbAmey R. KhanolkaraKarl RickertcDavid B. TurnerdTimothy A. PrusnickcJ. Matthew ManneDavid H. HurleyaMarat Khafizovb( )Cody A. Dennetta,f
Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, 83415, USA
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
KBR, Dayton, OH, 45431, USA
Azimuth Corporation, Fairborn, OH, 45324, USA
Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

In this work, impact of low level of uranium (U) atom substitution on thermal conductivity of thorium dioxide (ThO2) is investigated. ThO2 is an electronic insulator with a wide optical band-gap and no unpaired electrons whose thermal transport is governed by phonons. U-substitution introduces unpaired f-electrons resulting in paramagnetic behavior of UThO2 at room temperature, which significantly suppresses its thermal conductivity. A single crystal of UThO2 with graded composition of U is grown using a hydrothermal synthesis method, and thermal conductivity measurements are performed in regions with uniform composition of U at levels of 0%, 6%, 9% and 16%. Measured thermal conductivity profiles over 77–300 K temperature range are analyzed using an analytical expression for phonon-mediated thermal transport based on Klemens-Callaway model. Temperature dependent thermal conductivity is found to deviate significantly from the Rayleigh scattering trend expected for a simple substitutional point defect with a small perturbation to mass and interatomic forces. With the resonant scattering term, observed large suppression of thermal conductivity at low temperatures can be closely reproduced. Additionally, the extracted phonon-spin coupling constants imply a nonlinear relation of phonon-spin interaction intensity with respect to U doping percentage. Our study reveals how phonon-spin scattering contributed by unpaired f-electrons in U atoms influences thermal transport in the UThO2 system.

References

[1]

Mogensen M, Sammes NM, Tompsett GA. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 2000;129:63–94.

[2]

Pan W, Phillpot SR, Wan C, Chernatynskiy A, Qu Z. Low thermal conductivity oxides. MRS Bull 2012;37:917–22.

[3]

Zhao L-D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016;351:141–4.

[4]

Hurley DH, El-Azab A, Bryan MS, Cooper MWD, Dennett CA, Gofryk K, He H, Khafizov M, Lander GH, Manley ME, Mann JM, Marianetti CA, Rickert K, Selim FA, Tonks MR, Wharry JP. Thermal energy transport in oxide nuclear fuel. Chem Rev 2022;122:3711–62.

[5]
Berman R. Heat conduction in solids. Oxford university press; 1976.
[6]

Walker CT, Pohl RO. Phonon scattering by point defects. Phys Rev 1963;131:1433.

[7]

Gibby R. The effect of plutonium content on the thermal conductivity of (U,Pu)O2 solid solutions. J Nucl Mater 1971;38:163–77.

[8]

Ohmichi T, Fukushima S, Maeda A, Watanabe H. On the relation between lattice parameter and O/M ratio for uranium dioxide-trivalent rare earth oxide solid solution. J Nucl Mater 1988;102:40–6.

[9]

Klemens PG. The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc A 1955;68:1113.

[10]

Abeles B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev 1963;131:1906–11.

[11]

Slack GA. Thermal conductivity of CaF2, MnF2, CoF2, and ZnF2 crystals. Phys Rev 1961;122:1451.

[12]

Pohl RO. Thermal conductivity and phonon resonance scattering. Phys Rev Lett 1962;8:481.

[13]

Slack GA, Galginaitis S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Phys Rev 1964;133:A253.

[14]

Kundu A, Otte F, Carrete J, Erhart P, Li W, Mingo N, Madsen GKH. Effect of local chemistry and structure on thermal transport in doped GaAs. Phys Rev Mater 2019;3:094602.

[15]

Dongre B, Carrete J, Katre A, Mingo N, Madsen GK. Resonant phonon scattering in semiconductors. J Mater Chem C 2018;6:4691–7.

[16]

Dongre B, Carrete J, Wen S, Ma J, Li W, Mingo N, Madsen GK. Combined treatment of phonon scattering by electrons and point defects explains the thermal conductivity reduction in highly-doped Si. J Mater Chem A 2020;8:1273–8.

[17]

Katre A, Carrete J, Dongre B, Madsen GK, Mingo N. Exceptionally strong phonon scattering by b substitution in cubic SiC. Phys Rev Lett 2017;119:075902.

[18]
Maradudin AA. In: Theoretical and experimental aspects of the effects of point defects and disorder on the vibrations of crystals–2. Solid State Phys. Academic Press; 1967. p. 19.
[19]

Mattuck R, Strandberg MWP. Spin-phonon interaction in paramagnetic crystals. Phys Rev 1960;119:1204.

[20]

Toombs GA, Sheard FW. Use of the drone-fermion representation. ii. phonon scattering by paramagnetic ions. J Phys C Solid State Phys 1973;6:1467.

[21]

Bagheri P, Reddy P, Kim JH, Rounds R, Sochacki T, Kirste R, Bockowski M, Collazo R, Sitar Z. Impact of impurity-based phonon resonant scattering on thermal conductivity of single crystalline GaN. Appl Phys Lett 2020;17:082101.

[22]

Sun Q, Hou S, Wei B, Su Y, Ortiz V, Sun B, Lin JY, Smith H, Danilkin S, Abernathy DL, Wilson R, Li C. Spin-phonon interactions induced anomalous thermal conductivity in nickel (ⅱ) oxide. Materials Today Physics 2023;35:101094.

[23]

Herring JS, MacDonald PE, Weaver KD, Kullberg C. Low cost, proliferation resistant, uranium–thorium dioxide fuels for light water reactors. Nucl Eng Des 2001;203:65–85.

[24]

Dennett CA, Hua Z, Khanolkar A, Yao T, Morgan PK, Prusnick TA, Poudel N, French A, Gofryk K, He L, Shao L, Khafizov M, Turner DB, Mann JM, Hurley DH. The influence of lattice defects, recombination, and clustering on thermal transport in single crystal thorium dioxide. Apl Mater 2020;8:111103.

[25]

Deskins WR, Hamed A, Kumagai T, Dennett CA, Peng J, Khafizov M, Hurley DH, El-Azab A. Thermal conductivity of ThO2: effect of point defect disorder. J Appl Phys 2021;129:075102.

[26]

Dennett CA, Deskins WR, Khafizov M, Hua Z, Khanolkar A, Bawane K, Fu L, Mann JM, Marianetti C, He L, Hurley DH, El-Azab A. An integrated experimental and computational investigation of defect and microstructural effects on thermal transport in thorium dioxide. Acta Mater 2021;213:116934.

[27]

Jin M, Dennett CA, Hurley DH, Khafizov M. Impact of small defects and dislocation loops on phonon scattering and thermal transport in ThO2. J Nucl Mater 2022;566:153758.

[28]

Deskins WR, Khanolkar A, Mazumder S, Dennett CA, Bawane K, Hua Z, Ferrigno J, He L, Mann JM, Khafizov M, Hurley DH, El-Azab A. A combined theoretical-experimental investigation of thermal transport in low-dose irradiated thorium dioxide. Acta Mater 2022;241:118379.

[29]

Gofryk K, Du S, Stanek CR, Lashley JC, Liu XY, Schulze RK, Smith JL, Safarik DJ, Byler DD, McClellan KJ, Uberuagu BP, Scott BL, Andersson DA. Anisotropic thermal conductivity in uranium dioxide. Nat Commun 2014;5:1–7.

[30]

Caciuffo R, Santini P, Carretta S, Amoretti G, Hiess A, Magnani N, Regnault LP, Lander GH. Multipolar, magnetic, and vibrational lattice dynamics in the low-temperature phase of uranium dioxide. Phys Rev B 2011;84:104409.

[31]

Valu SO, Bona ED, Popa K, Griveau JC, Eric W, Konings RJM. The effect of lattice disorder on the low-temperature heat capacity of (U1−yThy)O2 and 238Pu-doped UO2. Sci Rep 2019;9:1.

[32]

Rickert K, Turner DB, Prusnick TA, Velez MA, Vangala S, Mann JM. The impact of feedstock size and composition on the hydrothermal growth of (U,Th)O2. J Cryst Growth 2022;593:126732.

[33]

Rickert K, Prusnick TA, Hunt E, Kimani MM, Chastang S, Brooks DL, et al. Inhibiting laser oxidation of UO2 via Th substitution. J Nucl Mater 2019;517:254–62.

[34]

Hua Z, Ban H, Khafizov M, Schley R, Kennedy R, Hurley DH. Spatially localized measurement of thermal conductivity using a hybrid photothermal technique. J Appl Phys 2012;111:103505.

[35]

Hurley DH, Schley RS, Khafizov M, Wendt BL. Local measurement of thermal conductivity and diffusivity. Rev Sci Instrum 2015;86:123901.

[36]

Maznev AA, Hartmann J, Reichling M. Thermal wave propagation in thin films on substrates. J Appl Phys 1995;78:5266–9.

[37]

Hatori K, Taketoshi N, Baba T. Thermoreflectance technique to measure thermal effusivity distribution with high spatial resolution. Rev Sci Instrum 2005;76:114901.

[38]

Mann JM, Thompson D, Serivalsatit K, Tritt TM, Ballato J, Kolis J. Hydrothermal growth and thermal property characterization of ThO2 single crystals. Cryst Growth Des 2010;10:2146.

[39]

Xiao E, Ma H, Bryan MS, Fu L, Mann JM, Winn B, et al. Validating first-principles phonon lifetimes via inelastic neutron scattering. Phys Rev B 2022;106:144310.

[40]

Allen PB. Improved callaway model for lattice thermal conductivity. Phys Rev B 2013;88:144302.

[41]

Ma J, Li W, Luo X. Examining the callaway model for lattice thermal conductivity. Phys Rev B 2014;90:035203.

[42]

Callaway J. Model for lattice thermal conductivity at low temperatures. Phys Rev 1959;113:1046.

[43]

Chauhan VS, Pakarinen J, Yao T, He L, Hurley DH, Khafizov M. Indirect characterization of point defects in proton irradiated ceria. Materialia 2021;15:101019.

[44]

Mathis MA, Khanolkar A, Fu L, Bryan MS, Dennett CA, Rickert K, et al. Generalized quasiharmonic approximation via space group irreducible derivatives. Phys Rev B 2022;106:014314.

[45]

Khanolkar A, Wang Y, Dennett CA, Hua Z, Mann JM, Khafizov M, Hurley DH. Temperature-dependent elastic constants of thorium dioxide probed using time-domain brillouin scattering. J Appl Phys 2023:133.

[46]

Khafizov M, Park IW, Chernatynskiy A, He L, Lin J, Moore JJ, Swank D, Lillo T, Phillpot SR, El-Azab A, Hurley DH. Thermal conductivity in nanocrystalline ceria thin films. J Am Ceram Soc 2014;97:562–9.

[47]
Ziman JM. Electrons and phonons: the theory of transport phenomena in solids. Oxford university press; 2001.
[48]

Khafizov M, Pakarinen J, He L, Hurley DH. Impact of irradiation induced dislocation loops on thermal conductivity in ceramics. J Am Ceram Soc 2019;102:7533–42.

[49]

Verma NGS. Phonon conductivity of trivalent rare-earth-doped gallium and aluminium garnets. Phys Rev B 1972;6:3509.

[50]

Morton I, Lewis M. Effect of iron impurities on the thermal conductivity of magnesium oxide single crystals below room temperature. Phys Rev B 1971;3:552.

[51]

Santini P, Carretta S, Amoretti G, Caciuffo R, Magnani N, Lander GH. Multipolar interactions in f-electron systems: the paradigm of actinide dioxides. Rev Mod Phys 2009;81:807.

[52]

Moore JP, Mcelroy DL. Thermal conductivity of nearly stoichiometric single-crystal and polycrystalline UO2. J Am Ceram Soc 1971;54:40.

[53]

Lonchakov AT, Sokolov VI, Gruzdev NB. An unusually strong resonant phonon scattering by 3-d impurities in Ⅱ–Ⅵ semiconductors. Phys Status Solidi 2004;1:2967.

Journal of Materiomics
Pages 709-715
Cite this article:
Hua Z, Adnan S, Khanolkar AR, et al. Thermal conductivity suppression in uranium-doped thorium dioxide due to phonon-spin interactions. Journal of Materiomics, 2024, 10(3): 709-715. https://doi.org/10.1016/j.jmat.2023.11.007

212

Views

1

Crossref

1

Web of Science

2

Scopus

Altmetrics

Received: 20 September 2023
Revised: 06 November 2023
Accepted: 10 November 2023
Published: 05 December 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return