AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Fabrication of amorphous nanoporous ZrO2/SiO2 aerogel enabling nonlinear optical properties

Hongwei Chua,1( )Mingjie Xua,1Benxue Liub,1Zhongben PanaHan PanaShengzhi ZhaoaDong XubDechun Lia,( )
School of Information Science and Engineering, and Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao, 266237, Shandong, China
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China

1 These authors contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Amorphous oxides have unique physicochemical properties with extensive opto-electronic applications such as the thin-film transistor, light-emitting diode backplanes, and supercontinuum generation. In this contribution, we synthesize the amorphous ZrO2/SiO2 nanoporous aerogel with high structural integrity. With the femtosecond excitation laser at 800–1,064 nm, the broadband second harmonic generation is observed. The nonlinear optical properties of the as-prepared ZrO2/SiO2 aerogel are investigated at 1.0 μm and 1.5 μm for the first time. Subsequently, the amorphous ZrO2/SiO2 saturable absorber is originally applied in the Yb-doped and Er-doped fiber lasers to realize the mode-locking operations. In the Yb-doped fiber laser, the dissipative soliton resonance mode-locking operation is demonstrated with the largest pulse duration of 22 ns at a repetition rate of 7.8 MHz and a high signal-to-noise ratio of 64 dB. In the Er-doped fiber laser, a conventional soliton mod-locking regime is observed with an ultrashort pulse width of 960 fs, a repetition frequency of 6.55 MHz, and a time-bandwidth production of 0.347. Our work shows the good ability of the ZrO2/SiO2 aerogel in generating ultrafast pulses and extends the saturable absorber into the amorphous material realm.

References

[1]

Zeng L, Han W, Ren X, Li X, Wu D, Liu S, et al. Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 Dirac semimetal. Nano Lett 2023;23(17):8241–8.

[2]

Zeng L, Wu D, Jie J, Ren X, Hu X, Lau S, et al. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 μm. Adv Mater 2020;32:2004412.

[3]

Hu Y, Chu H, Li D, Li Y, Zhao S, Li D, et al. Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region. J Mater Sci Technol 2021;81:51–7.

[4]

Wu D, Xu M, Zeng L, Shi Z, Tian Y, Li X, et al. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022;16:5545–55.

[5]

Wu D, Guo C, Zeng L, Ren X, Shi Z, Wen L, et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci Appl 2023;12:5.

[6]

An C, Zhou Y, Chen C, Fei F, Song F, Park C, et al. Long-range ordered amorphous atomic chains as building blocks of a superconducting quasi-one-dimensional crystal. Adv Mater 2020;32:2002352.

[7]

Mott N, Davis E, Street R. States in the gap and recombination in amorphous semiconductors. Philos Mag A 1975;32:961–96.

[8]

Konstantinou K, Elliott S, Akola J. Inherent electron and hole trapping in amorphous phase-change memory materials: Ge2Sb2Te5. J Mater Chem C 2022;10:6744–53.

[9]

Strand J, Kaviani M, Gao D, El-Sayed A, Afanasev V, Shluger A. Intrinsic charge trapping in amorphous oxide films: status and challenges. J Phys Condens Matter 2018;30:233001.

[10]

Konstantinou K, Duffy D, Shluger A. Structure and luminescence of intrinsic localized states in sodium silicate glasses. Phys Rev B 2016;94:174202.

[11]

Mora-Fonz D, Shluger A. Modeling of intrinsic electron and hole trapping in crystalline and amorphous ZnO. Adv Electron Mater 2020;6:1900760.

[12]

Mora-Fonz D, Kaviani M, Shluger A. Disorder-induced electron and hole trapping in amorphous TiO2. Phys Rev B 2020;102:054205.

[13]

Hu F, Zhu S, Chen S, Li Y, Ma L, Wu T, et al. Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv Mater 2017;29:1606570.

[14]

Chen G, Zhu Y, Chen H, Hu Z, Hung S, Ma N, et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv Mater 2019;31:1900883.

[15]

Hu Y, Wang Y, Su R, Cao C, Li F, Sun C, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv Mater 2016;28:10293–7.

[16]

Yang L, Guo Z, Huang J, Xi Y, Gao R, Su G, et al. Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting. Adv Mater 2017;29:1704574.

[17]

Wu W, Yeh H, Chan L, Chen C. Red organic light-emitting diodes with a non-doping amorphous red emitter. Adv Mater 2002;14:1072–5.

[18]

Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano, et al. A p-type amorphous oxide semiconductor and room temperature fabrication of amorphous oxide p–n heterojunction diodes. Adv Mater 2003;15:1409–13.

[19]

Kim J, Yasuda T, Yang Y, Adachi C. Bifunctional star-burst amorphous molecular materials for OLEDs: achieving highly efficient solid-state luminescence and carrier transport induced by spontaneous molecular orientation. Adv Mater 2013;25:2666–71.

[20]

Ran X, Li Y, Wei Z, Huo X, He Y, Wang X, et al. Highly enhanced nonlinear optical absorption with ultrafast charge transfer of reduced graphene oxide hybridized by an azobenzene derivative. Opt Express 2021;29:5213–25.

[21]

Dong L, Chu H, Li Y, Zhao S, Li D. Enhanced optical nonlinearity and ultrafast carrier dynamics of TiO2/CuO nanocomposites. Compos Part B 2022;237:109860.

[22]

Sui R, Rizkalla A, Charpentier P. Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2. Langmuir 2006;22:4390–6.

[23]

Teichner S, Nicolaon G, Vicarini M, Gardes G. Inorganic oxide aerogels. Adv Colloid Interface Sci 1976;5:245–73.

[24]

Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 1988;18:259–341.

[25]

Liu B, Gao M, Liu X, Xiu Y, Yi X, Zhu L, et al. Monolithic zirconia aerogel from polyacetylacetonatozirconium precursor and ammonia hydroxide gel initiator: formation mechanism, mechanical strength and thermal properties. RSC Adv 2018;8:41603–11.

[26]

Liu B, Liu X, Zhao X, Fan H, Zhang J, Yi X, et al. High-strength, thermal-stable ZrO2 aerogel from polyacetylacetonatozirconium. Chem Phys Lett 2019;715:109–14.

[27]

Liao J, Gao P, Xu L, Feng J. A study of morphological properties of SiO2 aerogels obtained at different temperatures. J Adv Ceram 2018;7:307–16.

[28]

Yang W, Wei C, Yuen A, Lin B, Yeoh G, Lu H, et al. Fire-retarded nanocomposite aerogels for multifunctional applications: a review. Compos Part B 2022;237:109866.

[29]

Liu P, Gao H, Chen X, Chen D, Lv J, Han M, et al. In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Compos Part B 2020;195:108072.

[30]

Beer S, Samelor D, Aal A, Etzkorn J, Rogalla D, Turgambaeva A, et al. Direct liquid injection chemical vapor deposition of ZrO2 films from a heteroleptic Zr precursor: interplay between film characteristics and corrosion protection of stainless steel. J Mater Res Technol 2021;13:1599–614.

[31]

Dehnen S, Schreiner P, Chatterjee S, Volz K, Rosemann N, Pilgrim W, et al. Amorphous molecular materials for directed supercontinuum generation. ChemPhotoChem 2021;5:1033–41.

[32]

Fischer R, Saltiel S, Neshev D, Krolilowski W, Kivshar Y. Broadband femtosecond frequency doubling in random media. Appl Phys Lett 2006;89:191105.

[33]

Sheng Y, Dou J, Ma B, Cheng B, Zhang D. Broadband efficient second harmonic generation in media with a short-range order. Appl Phys Lett 2007;91:011101.

[34]

Pan H, Chu H, Wang X, Li Y, Zhao S, Li G, et al. Nonlinear optical features of Zeolitic Imidazolate Framework-67 nanocrystals for mid-infrared pulse generation. Cryst Growth Des 2020;20:6683–90.

[35]

Komarov A, Amrani F, Dmitriev A, Komarov K, Sanchez F. Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions. Phys Rev A 2013;87:023838.

[36]

Li S, Dong Z, Li G, Chen R, Gu C, Xu L, et al. Chirp-adjustable square-wave pulse in a passively mode-locked fiber laser. Opt Express 2018;26:23926–34.

[37]

Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 2012;112:6027–53.

[38]

Cheng Z, Li H, Shi H, Ren J, Yang Q, Wang P. Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Opt Express 2015;23:7000–6.

[39]

Stoeber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968;26:62–9.

[40]

Zhang H, Wang X, Zhao X, Li W, Tang Q. Silica photonic crystals with quasi-full band gap in the visible region prepared in ethanol. Prog Nat Sci 2003;13:717–20.

[41]

Zhou L, Wu Y, Liu G, Li Y, Fan Q, Shao J. Fabrication of high-quality silica photonic crystals on polyester fabrics by gravitational sedimentation self-assembly. Color Technol 2015;131:413–23.

Journal of Materiomics
Pages 1109-1116
Cite this article:
Chu H, Xu M, Liu B, et al. Fabrication of amorphous nanoporous ZrO2/SiO2 aerogel enabling nonlinear optical properties. Journal of Materiomics, 2024, 10(5): 1109-1116. https://doi.org/10.1016/j.jmat.2023.11.014

95

Views

2

Crossref

2

Web of Science

1

Scopus

Altmetrics

Received: 21 October 2023
Revised: 16 November 2023
Accepted: 25 November 2023
Published: 12 December 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return