Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Herein we establish formation ability descriptors of high-entropy rare-earth monosilicates (HEREMs) via the data-driven discovery based on the high-throughput solid-state reaction and machine learning (ML) methods. Specifically, adequate high-quality data are generated with 132 samples synthesized by the self-developed high-throughput solid-state reaction apparatuses, and 30 potential descriptors are considered in ML simultaneously. Two classifications are proposed to study the phase formation of HEREMs via the ML approach combined with the genetic algorithm: (Ⅰ) to distinguish pure HEREMs (X) from other phases and (Ⅱ) to categorize the detail phases of HEREMs (X2, X1, or X2+X1). Four formation ability descriptors (
Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater 2017;122:448-511.
Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, et al. Entropy-stabilized oxides. Nat Commun 2015;6:8485.
Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater 2020;5:295-309.
Ma MD, Han YJ, Zhao ZS, Feng J, Chu YH. Ultrafine-grained high-entropy zirconates with superior mechanical and thermal properties. J Materiomics 2023;9:370-7.
Mi RH, Chen BH, Li Zhu X, Chen XM. Dielectric and ferroelectric characteristics of Ba(Ti0.25Zr0.25Hf0.25Sn0.25)O3 high-entropy ceramics. J Materiomics 2023;9:634-41.
Rost CM, Rak Z, Brenner DW, Maria JP. Local structure of the MgxNixCoxCuxZnxO (x=0.2) entropy-stabilized oxide: an EXAFS study. J Am Ceram Soc 2017;100:2732-8.
Usharani NJ, Bhandarkar A, Subramanian S, Bhattacharya SS. Antiferromagnetism in a nanocrystalline high entropy oxide (Co,Cu,Mg,Ni,Zn)O: magnetic constituents and surface anisotropy leading to lattice distortion. Acta Mater 2020;200:526-36.
Jiang SC, Hu T, Gild J, Zhou NX, Nie JY, Qin MD, et al. A new class of high-entropy perovskite oxides. Scripta Mater 2018;142:116-20.
Nguyen TX, Liao YC, Lin CC, Su YH, Ting JM. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv Funct Mater 2021;31:2101632.
Spiridigliozzi L, Ferone C, Cioffi R, Dell'Agli G. A simple and effective predictor to design novel fluorite-structured high-entropy oxides (HEOs). Acta Mater 2021;202:181-9.
Han YJ, Yu RW, Liu HH, Chu YH. Synthesis of the superfine high-entropy zirconate nanopowders by polymerized complex method. J Adv Ceram 2022;11:136-44.
Chen ZY, Lin CC, Zheng W, Jiang CF, Zeng Y, Song XM. Water vapor corrosion behaviors of high-entropy pyrosilicates. J Materiomics 2022;8:992-1000.
Ren XM, Tian ZL, Zhang J, Wang JY. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scripta Mater 2019;168:47-50.
Ridley M, Gaskins J, Hopkins P, Opila E. Tailoring thermal properties of multi-component rare earth monosilicates. Acta Mater 2020;195:698-707.
Chen H, Xiang HM, Dai FZ, Liu JC, Zhou YC. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J Mater Sci Technol 2020;36:134-9.
Tian ZL, Zhang J, Zheng LY, Hu WP, Ren XM, Lei YM, et al. General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium-magnesium-aluminosilicate at 1300 ℃. Corrosion Sci 2019;148:281-92.
Cao G, Ouyang JH, Li Y, Liu ZG, Ding ZY, Wang YH, et al. Improved thermophysical properties of rare-earth monosilicates applied as environmental barrier coatings by adjusting structural distortion with RE-doping. J Eur Ceram Soc 2021;41:7222-32.
Liao W, Tan YQ, Zhu CW, Teng Z, Jia P, Zhang HB. Synthesis, microstructures, and corrosion behaviors of multi-components rare-earth silicates. Ceram Int 2021;47:32641-7.
Tan YQ, Liao W, Zeng S, Jia P, Teng Z, Zhou XS, et al. Microstructures, thermophysical properties and corrosion behaviours of equiatomic five-component rare-earth monosilicates. J Alloys Compd 2022;907:164334.
Fan D, Zhong X, Zhang ZZ, Huang LP, Niu YR, Wang LJ, et al. Microstructure and property evolution of high-entropy rare-earth silicate T/EBCs during thermal aging. J Am Ceram Soc 2023;106:2515-28.
Abrar S, Ma Z, Liu L, Nazeer F, Malik A, Ahmad N. Improved CMAS resistance of a newly developed high entropy ceramics monosilicate: a potential environmental barrier coating material. Surf Coat Technol 2023;465:129618.
Zhang J, Xu BA, Xiong YX, Ma SH, Wang Z, Wu ZG, et al. Design high-entropy carbide ceramics from machine learning. npj Comput Mater 2022;8:5.
Meng H, Yu RW, Tang ZY, Wen ZH, Yu HL, Chu YH. Formation ability descriptors for high-entropy diborides established through high-throughput experiments and machine learning. Acta Mater 2023;256:119132.
Meng H, Yu RW, Tang ZY, Wen ZH, Chu YH. Formation ability descriptors for high-entropy carbides established through high-throughput methods and machine learning. Cell Rep Phys Sci 2023;4:101512.
Witman M, Ek G, Ling SL, Chames J, Agarwal S, Wong J, et al. Data-driven discovery and synthesis of high-entropy alloy hydrides with targeted thermodynamic stability. Chem Mater 2021;33:4067-76.
Rao ZY, Tung PY, Xie RW, Wei Y, Zhang HB, Ferrari A, et al. Machine learning-enabled high-entropy alloy discovery. Science 2022;378:78-85.
Hu CZ, Luo J. Data-driven prediction of grain boundary segregation and disordering in high-entropy alloys in a 5D space. Mater Horiz 2022;9:1023-35.
Yao YG, Dong Q, Brozena A, Luo J, Miao JW, Chi MF, et al. High-entropy nanoparticles: synthesis-structureproperty relationships and data-driven discovery. Science 2022;376:151.
Yan YG, Pei ZR, Gao MC, Misture S, Wang K. Data-driven discovery of a formation prediction rule on high-entropy ceramics. Acta Mater 2023;253:118955.
Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 2001;34:210-3.
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15-50.
Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953-79.
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.
Zunger A, Wei SH, Ferreira LG, Bernard JE. Special quasirandom structures. Phys Rev Lett 1990;65:353-6.
van de Walle A. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 2009;33:266-78.
Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188-92.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825-30.
Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. Apl Mater 2013;1:011002.
Wen TQ, Ye BL, Liu HH, Ning SS, Wang CZ, Chu YH. Formation criterion for binary metal diboride solid solutions established through combinatorial methods. J Am Ceram Soc 2020;103:3338-48.
He JJ, Su XP, Wang CX, Li JJ, Hou YX, Li ZH, et al. Machine learning assisted predictions of multi-component phase diagrams and fine boundary information. Acta Mater 2022;240:118341.
Zhang Y, Wen C, Wang CX, Antonov S, Xue DZ, Bai Y, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater 2020;185:528-39.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).