Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the rapidly evolving aerospace sector, the quest for sophisticated thermal barrier coating (TBC) materials has intensified. These materials are primarily sought for their superior comprehensive thermal characteristics, which include a low thermal conductivity coupled with a high coefficient of thermal expansion (CTE) that synergizes with the substrate. In our study, we adopt a solid-state method to synthesize a series of high-entropy rare-earth cerates: La2Ce2O7 (1RC), (La1/2Nd1/2)2Ce2O7 (2RC), (La1/3Nd1/3Sm1/3)2Ce2O7 (3RC), (La1/4Nd1/4Sm1/4Eu1/4)2Ce2O7 (4RC), and (La1/5Nd1/5Sm1/5Eu1/5Gd1/5)2Ce2O7 (5RC), all sintered at 1,600 ℃ for 10 h. We thoroughly examine their phase structure, morphology, elemental distribution, and thermal properties. Our in-depth analysis of the phonon scattering mechanisms reveals that 4RC and 5RC exhibit exceptional thermal properties: high CTEs of 13.00 × 10−6 K−1 and 12.77 × 10−6 K−1 at 1,400 ℃, and low thermal conductivities of 1.55 W/(m·K) and 1.68 W/(m·K) at 1,000 ℃, respectively. Compared to other TBC systems, 4RC and 5RC stand out for their excellent thermal characteristics. This study significantly contributes to the development of high-entropy oxides for TBC applications.
Vaßen R, Kagawa Y, Subramanian R, Zombo P, Zhu D. Testing and evaluation of thermal-barrier coatings. MRS Bull 2012;37(10):911–6.
Zhang X, Wang C, Ye R, Deng C, Liang X, Deng Z, et al. Mechanism of vertical crack formation in Yb2SiO5 coatings deposited via plasma spray-physical vapor deposition. J Materiomics 2020;6(1):102–8.
Levi CG. Emerging materials and processes for thermal barrier systems. Curr Opin Solid State Mater Sci 2004;8(1):77–91.
Ma M, Han Y, Zhao Z, Feng J, Chu Y. Ultrafine-grained high-entropy zirconates with superior mechanical and thermal properties. J Materiomics 2023;9(2):370–7.
Zhang Z, Peng F, Huang Y, Zheng W, Jiang C, Song X, et al. Rare-earth cerates with a high coefficient of thermal expansion and excellent CMAS corrosion resistance obtained through high-entropy designing. J Mater Res Technol 2023;26:4179–90.
Wu J, Wei X, Padture NP, Klemens PG, Gell M, García E, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 2002;85(12):3031–5.
Dai H, Zhong X, Li J, Meng J, Cao X. Neodymium–cerium oxide as new thermal barrier coating material. Surf Coat Technol 2006;201(6):2527–33.
Yang K, Chen L, Wu F, Zheng Q, Li J, Song P, et al. Thermophysical properties of Yb (Tax Nb1-x) O4 ceramics with different crystal structures. Ceram Int 2020;46(18):28451–8.
Wan C, Zhang W, Wang Y, Qu Z, Du A, Wu R, et al. Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore. Acta Mater 2010;58(18):6166–72.
Wang Y, Yang F, Xiao P. Role and determining factor of substitutional defects on thermal conductivity: a study of La2(Zr1-xBx)2O7 (B=Hf, Ce, 0≤x≤0.5) pyrochlore solid solutions. Acta Mater 2014;68:106–15.
Ma W, Gong S, Xu H, Cao X. The thermal cycling behavior of Lanthanum–cerium oxide thermal barrier coating prepared by EB–PVD. Surf Coat Technol 2006;200(16–17):5113–8.
Ma W, Gong S, Xu H, Cao X. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions. Scripta Mater 2006;54(8):1505–8.
Cao X, Vassen R, Fischer W, Tietz F, Jungen W, Stöver D. Lanthanum–cerium oxide as a thermal barrier-coating material for high-temperature applications. Adv Mater 2003;15(17):1438–42.
Che J, Wang X, Liu X, Liang G, Zhang S. Thermal transport property in pyrochlore-type and fluorite-type A2B2O7 oxides by molecular dynamics simulation. Int J Heat Mass Tran 2022;182:122038.
Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, et al. Entropy-stabilized oxides. Nat Commun 2015;6:8485.
Kumar A, Dragoe D, Berardan D, Dragoe N. Thermoelectric properties of high-entropy rare-earth cobaltates. J Materiomics 2023;9(1):191–6.
Liu R, Liang W, Miao Q, Zhao H, Ramakrishna S, Ramasubramanian B, et al. A novel defect fluorite type high-entropy (Dy0.2Ho0.2Er0.2Tm0.2Lu0.2)2Hf2O7 ceramic with low thermal conductivity and CTE: a mechanism study. J Mater Res Technol 2023;27:1365–80.
Zhu J, Xu J, Zhang P, Meng X, Cao S, Wu J, et al. Enhanced mechanical and thermal properties of ferroelastic high-entropy rare-earth-niobates. Scripta Mater 2021;200:113912.
Tang A, Li B, Sang W, Hongsong Z, Chen X, Zhang H, et al. Thermophysical performances of high-entropy (La0.2Nd0.2Yb0.2Y0.2Sm0.2)2Ce2O7 and (La0.2Nd0.2Yb0.2Y0.2Lu0.2)2Ce2O7 oxides. Ceram Int 2022;48(4):5574–80.
Haoming Z, Yan S, Weiwei S, Yihao G, Yukun Z, Yuzhu Z, et al. Thermophysical performances of novel high entropy (La0.25 RE0.25Yb0.25 Y0.25)2Ce2O7 (RE=Nd and Dy) oxides. Ceram Int 2022;48(6):8380–6.
Wan C, Qu Z, Du A, Pan W. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7. Acta Mater 2009;57(16):4782–9.
Yang J, Zhao M, Zhang L, Wang Z, Pan W. Pronounced enhancement of thermal expansion coefficients of rare-earth zirconate by cerium doping. Scripta Mater 2018;153:1–5.
Wang YL, Lin GQ, Yang LX, Li JZ, Zhang XF, Liu HJ, et al. Preparation and thermophysical properties of a novel dual-phase and single-phase rare-earth-zirconate high-entropy ceramics. J Alloys Compd 2023;938:168551.
Ren K, Wang Q, Shao G, Zhao X, Wang Y. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Mater 2020;178:382–6.
Ping X, Meng B, Li C, Lin W, Chen Y, Fang C, et al. Thermophysical and electrical properties of rare-earth-cerate high-entropy ceramics. J Am Ceram Soc 2022;105(7):4910–20.
Bruls RJ, Hintzen HT, Metselaar R. A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds. J Eur Ceram Soc 2005;25(6):767–79.
Xue Y, Zhao X, An Y, Wang Y, Gao M, Zhou H, et al. High-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Ce2O7: a potential thermal barrier material with improved thermo-physical properties. J Adv Ceram 2022;11(4):615–28.
Charvat FR, Kingery WD. Thermal Conductivity: XIII, effect of microstructure on conductivity of single-phase ceramics. J Am Ceram Soc 1957;40(9):306–15.
Roufosse M, Klemens PG. Thermal conductivity of complex dielectric crystals. Phys Rev B 1973;7(12):5379–86.
Klemens PG. Thermal resistance due to point defects at high temperatures. Phys Rev 1960;119(2):507–9.
Ambegaokar V. Thermal resistance due to isotopes at high temperatures. Phys Rev 1959;114(2):488–9.
Tian Z, Lin C, Zheng L, Sun L, Li J, Wang J. Defect-mediated multiple-enhancement of phonon scattering and decrement of thermal conductivity in (YxYb1-x)2SiO5 solid solution. Acta Mater 2018;144:292–304.
Chen Z, Peng F, Lin C, Zheng W, Song X, Jiang C, et al. High-entropy engineering promotes the thermal properties of monosilicates. J Eur Ceram Soc 2024;44(2):1217–28.
Chen Q, Xie Y, Yan Z, Wang H, Fan F, Xu J, et al. Impact of nonstoichiometry on the mechanical properties and thermal conductivity of gadolinium zirconate ceramics. Ceram Int 2023;49(21):33972–80.
Zhang Y, Xie M, Wang Z, Song X, Mu R, Zhou F, et al. Exploring the increasing behavior of thermal conductivity for high-entropy zirconates at high temperatures. Scripta Mater 2023;228:115328.
Zhang Y, Xie M, Wang Z, Song X, Mu R, Gao J, et al. Unveiling the underlying mechanism of unusual thermal conductivity behavior in multicomponent high-entropy (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xCex)2O7 ceramics. J Alloys Compd 2023;958:170471.
Qu Z, Wan C, Pan W. Thermophysical properties of rare-earth stannates: effect of pyrochlore structure. Acta Mater 2012;60(6–7):2939–49.
Keramidas VG, White WB. Raman spectra of oxides with the fluorite structure. J Chem Phys 1973;59(3):1561–2.
Glerup M, Nielsen OF, Poulsen FW. The structural transformation from the pyrochlore structure, A2B2O7, to the Fluorite Structure, AO2, studied by Raman spectroscopy and defect chemistry modeling. J Solid State Chem 2001;160(1):25–32.
Scheetz BE, White WB. Characterization of anion disorder in zirconate A2B2O7 compounds by Raman spectroscopy. J Am Ceram Soc 1979;62(9–10):468–70.
Chen X, Zhang H, Zhou L, Ren B, Tang A, Dang X. Influence of Ti addition on thermophyscial properties of Sm2Ce2O7 oxides. Process Appl Ceram 2018;12(1):21–6.
Wang X, Guo L, Zhang H, Gong S, Guo H. Structural evolution and thermal conductivities of (Gd1-xYbx)2Zr2O7 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings. Ceram Int 2015;41(10):12621–5.
Garg J, Bonini N, Kozinsky B, Marzari N. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys Rev Lett 2011;106(4):045901.
Wu CS, Tsai PH, Kuo CM, Tsai CW. Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys. Entropy 2018;20(12):967.
Hong-song Z, Qiang X, Fu-chi W, Ling L, Yuan W, Xiaoge C. Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings. J Alloys Compd 2009;475(1–2):624–8.
Li M, Lin C, Niu Y, Zhang J, Zeng Y, Song X. Order–disorder transition and thermal conductivities of the (NdSmEuGd)(1-x)/2Dy2xZr2O7 series. J Materiomics 2023;9(1):138–47.
He J. The roles of grain boundaries in thermoelectric transports. Mat Lab 2022;1:220012.
Chen L, Hu M, Zheng X, Feng J. Characteristics of ferroelastic domains and thermal transport limits in HfO2 alloying YTaO4 ceramics. Acta Mater 2023;251:118870.
Han Y, Liu X, Zhang Q, Huang M, Li Y, Pan W, et al. Ultra-dense dislocations stabilized in high entropy oxide ceramics. Nat Commun 2022;13:2871.
Subramanian MA, Aravamudan G, Subba Rao GV. Oxide pyrochlores—a review. Prog Solid State Chem 1983;15(2):55–143.
Vassen R, Cao X, Tietz F, Basu D, St€over D. Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 2000;83(8):2023–8.
Luo X, Luo L, Zhao X, Cai H, Duan S, Xu C, et al. Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties. J Eur Ceram Soc 2022;42(5):2391–9.
Feng J, Xiao B, Zhou R, Pan W. Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scripta Mater 2013;68(9):727–30.
Hu W, Lei Y, Zhang J, Wang J. Mechanical and thermal properties of RE4Hf3O12 (RE=Ho, Er, Tm) ceramics with defect fluorite structure. J Mater Sci Technol 2019;35(9):2064–9.
López-Cota FA, Cepeda-Sánchez NM, Díaz-Guillén JA, Dura OJ, López de la Torre MA, Maczka M, et al. Electrical and thermophysical properties of mechanochemically obtained lanthanide hafnates. J Am Ceram Soc 2017;100(5):1994–2004.
Tian Z, Zheng L, Wang J, Wan P, Li J, Wang J. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc 2016;36(1):189–202.
Chen L, Hu M, Wu P, Feng J. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J Am Ceram Soc 2019;102(8):4809–21.
Chen L, Hu M, Guo J, Chong X, Feng J. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase. J Mater Sci Technol 2020;52:20–8.
Zhang H, Zhao L, Sang W, Chen X, Tang A, Zhang H. Thermophysical performances of (La1/6Nd1/6Yb1/6Y1/6Sm1/6Lu1/6)2Ce2O7 high-entropy ceramics for thermal barrier coating applications. Ceram Int 2022;48(2):1512–21.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).