AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Automating selective area electron diffraction phase identification using machine learning

M. MikaaN. TomczakbC. FinneyaJ. CarterbA. Aitkaliyevaa( )
Nuclear Engineering Program in Department of Materials Science, University of Florida, 100 Rhines Hall, Gainesville, 32611, FL, USA
Department of Materials Science & Engineering, Case Western Reserve University, 2111 Martin Luther King Jr Dr, Cleveland, 44106, OH, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Selective area electron diffraction (SAED) patterns can provide valuable insight into the structure of a material. However, the manual identification of collected patterns can be a significant bottleneck in the overall phase classification workflow. In this work, we utilize the recent advances in computer vision and machine learning (ML) to automate the indexing of SAED patterns. The performance of six different ML algorithms is demonstrated using metallic plutonium-zirconium alloys. The most successful approach trained a neural network (NN) to make a classification of the phase and zone axis, and then utilized a second NN to synthesize multiple independent predictions of different tilts in a single sample to make an overall phase identification. The results demonstrate that automated SAED phase identification using ML is a viable route to accelerate materials characterization.

References

[1]

Wallerstein D, Solla EL, Lusquinos F, Comesana R, del Val J, Riveiro A, et al. Advanced characterization of intermetallic compounds in dissimilar aluminum-steel joints obtained by laser welding-brazing with Al-Si filler metals. Mater Charact 2021;179:e111345.

[2]

Clabel Huaman JL, Nicolodelli G, Senesi GS, Montes CR, Felicio Perruci NA, Bezzon VDN, et al. Characterization and distribution of mineral phases in an amazonian humiluvic spodosol profile by XRPD, HR-TEM, SAED and SEM-EDX. Environ Earth Sci 2021;80:e405.

[3]

Rahn T, Miller BD, Capriotti L, Aitkaliyeva A. TEM-based phase characterization of U–19Pu–10Zr irradiated in ATR. MRS Bull 2022;48:351-60.

[4]

Wang Y, Miller BD, Harp JM, Salvato D, Capriotti L, Yao T. Transmission electron microscopy characterization of the fuel-cladding chemical interactions in HT9 cladded U-10Zr fuel. J Nucl Mater 2022;572:e153990.

[5]
CrystalMaker Software Ltd. Oxford, SinglecrystalTM: a single-crystal diffraction program for mac and windows. https://crystalmaker.com/singlecrystal/index.html; 2022.
[6]

Aitkaliyeva A. Recent trends in metallic fast reactor fuels research. J Nucl Mater 2022;558:e153377.

[7]

Carmack W, Porter D, Chang Y, Hayes S, Meyer M, Burkes D, et al. Metallic fuels for advanced reactors. J Nucl Mater 2009;392:139-50.

[8]

Hirschhorn J, Tonks MR, Aitkaliyeva A, Adkins C. A study of constituent redistribution in U–Zr fuels using quantitative phase-field modeling and sensitivity analysis. J Nucl Mater 2019;523:143-56.

[9]

Capriotti L, Bremier S, Inagaki K, Poml P, Papaioannou D, Ohta H, et al. Characterization of metallic fuel for minor actinides transmutation in fast reactor. Prog Nucl Energy 2017;94:194-201.

[10]

Galloway J, Unal C, Carlson N, Porter D, Hayes S. Modeling constituent redistribution in U–Pu–Zr metallic fuel using the advanced fuel performance code bison. Nucl Eng Des 2015;286:1-17.

[11]

Bondarenko GG, Androsov AV, Bulatov GS, Gedgovd KN, Lyubimov DY, Yakunkin MM. Effect of the beta decay of metallic fission products on the chemical and phase compositions of the uranium–plutonium nitride nuclear fuel irradiated by fast neutrons. Russian Metall 2016:879-83.

[12]

Matthews C, Unal C, Galloway J, Keiser DD, Hayes SL. Fuel-cladding chemical interaction in U-Pu-Zr metallic fuels: a critical review. Nucl Technol 2017;198:231-59.

[13]

Labar JL. Consistent indexing of a (set of) single crystal saed pattern(s) with the process diffraction program. Ultramicroscopy 2005;103:237-49. https://doi.org/10.1016/j.ultramic.2004.12.004.

[14]

Li T, Wang H, Fan E, Wang L, Zhou Z. “Row indexing” of electron diffraction patterns along [uv0]. Z Kristallogr Crystall Mater 2012;227:665-71. https://doi.org/10.1524/zkri.2012.1499.

[15]

Honglong S, Guling Z, Bin Z, Minting L, Wenzhong W. A method for structure analysis of nanomaterials by electron diffraction: phase identification and unit cell determination. Microsc Res Tech 2013;76:641-7.

[16]

Aguiar JA, Gong ML, Unocic RR, Tasdizen T, Miller BD. Decoding crystallography from high-resolution electron imaging and diffraction datasets with deep learning. Sci Adv 2019;5:eaaw1949.

[17]

Ra M, Boo Y, Jeong JM, Batts-Etseg J, Jeong J, Lee W. Classification of crystal structures using electron diffraction patterns with a deep convolutional neural network. RSC Adv 2021;11:38307-15. https://doi.org/10.1039/D1RA07156D.

[18]

Ziletti A, Kumar D, Scheffler M, Ghiringhelli L. Insightful classification of crystal structures using deep learning. Nat Commun 2018;9:e2775. https://doi.org/10.1038/s41467-018-05169-6.

[19]
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: large-scale machine learning on heterogeneous systems, software available from tensorflow.org. 2015. https://www.tensorflow.org/.
[20]

van der Walt S, Schonberger JM, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al. The scikit-image contributors, scikit-image: image processing in Python. PeerJ 2014;2:e453. https://doi.org/10.7717/peerj.453.

[21]

Aitkaliyeva A, Adkins CA, McKinney C, Hirschhorn J, Tonks MR. In search of theta-(Pu,Zr) in binary Pu–Zr: thermal and microstructural analyses of Pu-30Zr alloy. J Nucl Mater 2020;528:e151875.

[22]

Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging 2018;9:611-29. https://doi.org/10.1007/s13244-018-0639-9.

[23]

Ren P, Xiao Y, Chang X, Huang PY, Li Z, Chen X, et al. A comprehensive survey of neural architecture search: challenges and solutions. ACM Comput Surv 2021;54(4):76.

[24]
Tomczak N. Convolutional neural networks for indexing transmission electron microscopy patterns: a proof of concept. 2023.
[25]

Baldominos A, Saez Y, Isasi P. A survey of handwritten character recognition with mnist and emnist. Appl Sci 2019;9:e3169.

[26]

Kanatani K. For geometric inference from images, what kind of statistical model is necessary? Syst Comput Jpn 2004;35:1-9.

[27]

Moeck P, DeStefano P. Accurate lattice parameters from 2d-periodic images for subsequent bravais lattice type assignments. Adv Struct Chem Imag 2018;4:e5.

[28]

Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A, Hyperband. A novel bandit-based approach to hyperparameter optimization. J Mach Learn Res 2018;18:1-52.

[29]

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011;12:2825-30.

[30]

Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater 2022;8:e59.

[31]

Choudhary K, DeCost B. Atomistic line graph neural network for improved materials property predictions. npj Comput Mater 2021;7:e185.

[32]

Choudhary K, Gurunathan R, DeCost B, Biacchi A, Atomvision. A machine vision library for atomistic images. J Chem Inf Model 2023;63:1708-22.

[33]

Zhou J, Xie C, Wen Z, Zhao X, Xuan Q. Data augmentation on graphs: a technical survey. J ACM 2023;37:e111.

[34]

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929-58.

[35]
Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using networkx. In: Proceedings of the 7th Python in science conference, pasadena, CA USA; 2008. p. 11-5.
[36]
Ferludin O, Eigenwillig A, Blais M, Zelle D, Pfeifer J, Sanchez Gonzalez A, et al. TF-GNN: graph neural networks in tensorflow. 2022. http://arxiv.org/abs/2207.03522.
Journal of Materiomics
Pages 896-905
Cite this article:
Mika M, Tomczak N, Finney C, et al. Automating selective area electron diffraction phase identification using machine learning. Journal of Materiomics, 2024, 10(4): 896-905. https://doi.org/10.1016/j.jmat.2023.12.010

253

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 04 October 2023
Revised: 19 December 2023
Accepted: 20 December 2023
Published: 01 February 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return