AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Defect chemistry for extrinsic doping in ductile semiconductor α-Ag2S

Hexige WulijiaKunpeng Zhaoa( )Huirong JingbRunxin OuyangbYu YangbTian-Ran WeiaHong Zhub( )Xun Shia,c( )
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

As a new type of inorganic ductile semiconductor, silver sulfide (α-Ag2S) has garnered a plethora of interests in recent years due to its promising applications in flexible electronics. However, the lack of detailed defect calculations and chemical intuition has largely hindered the optimization of material's performance. In this study, we systematically investigate the defect chemistry of extrinsic doping in α-Ag2S using first-principles calculations. We computationally examine a broad suite of 17 dopants and find that all aliovalent elements have extremely low doping limits (<0.002%) in α-Ag2S, rendering them ineffective in tuning the electron concentrations. In contrast, the isovalent elements Se and Te have relatively high doping limits, being consistent with the experimental observations. While the dopant Se or Te itself does not provide additional electrons, its introduction has a significant impact on the band gap, the band-edge position, and especially the formation energy of Ag interstitials, which effectively improve the electron concentrations by 2–3 orders of magnitudes. The size effects of Se and Te doping are responsible for the more favorable Ag interstitials in Ag2S0.875Se0.125 and Ag2S0.875Te0.125 with respect to pristine Ag2S. This work serves as a theoretical foundation for the rational design of Ag2S-based functional materials.

References

[1]

Shi X, Chen L, Uher C. Recent advances in high-performance bulk thermoelectric materials. Int Mater Rev 2016;61:379–415.

[2]

Zhao K, Zhu C, Zhu M, Chen H, Lei J, Ren Q, et al. Structural modularization of Cu2Te leading to high thermoelectric performance near the Mott–Ioffe–Regel limit. Adv Mater 2022;34:2108573.

[3]

Jena AK, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev 2019;119:3036–103.

[4]

Gong Y, Yuan H, Wu C-L, Tang P, Yang S-Z, Yang A, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nanotechnol 2018;13:294–9.

[5]

Van de Walle CG, Neugebauer J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides. J Appl Phys 2004;95:3851–79.

[6]

Seebauer EG, Kratzer MC. Charged point defects in semiconductors. Mater Sci Eng R Rep 2006;55:57–149.

[7]

Wei T, Qiu P, Zhao K, Shi X, Chen L. Ag2Q-based (Q = S, Se, Te) silver chalcogenide thermoelectric materials. Adv Mater 2023;35:2110236.

[8]

Huang Y-T, Kavanagh SR, Scanlon DO, Walsh A, Hoye RLZ. Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology 2021;32:132004.

[9]

Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421–6.

[10]

Li G, An Q, Morozov SI, Duan B, Goddard WA, Zhang Q, et al. Ductile deformation mechanism in semiconductor α-Ag2S. npj Comput Mater 2018;4:44.

[11]

Liang X, Chen C, Dai F. Effect of plastic deformation on phonon thermal conductivity of α-Ag2S. Appl Phys Lett 2020;117:253901.

[12]

He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Sci Adv 2020;6:eaaz8423.

[13]

Yang Q, Yang S, Qiu P, Peng L, Wei T-R, Zhang Z, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022;377:854–8.

[14]

Sadanaga R, Sueno S. X-ray study on the α-β transition of Ag2S. Mineral J 1967;5:124–43.

[15]

Li L, Peng C, Chen J, Ma Z, Chen Y, Li S, et al. Study the effect of alloying on the phase transition behavior and thermoelectric properties of Ag2S. J Alloys Compd 2021;886:161241.

[16]

Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ Sci 2019;12:2983–90.

[17]

Liang J, Qiu P, Zhu Y, Huang H, Gao Z, Zhang Z, et al. Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system. Research 2020;2020:6591981.

[18]

Hu H, Wang Y, Fu C, Zhao X, Zhu T. Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility. Innovation 2022;3:100341.

[19]

Wang Y, Li A, Hu H, Fu C, Zhu T. Reversible room temperature brittle-plastic transition in Ag2Te0.6S0.4 inorganic thermoelectric semiconductor. Adv Funct Mater 2023;33:2300189.

[20]

Liu J, Xing T, Gao Z, Liang J, Peng L, Xiao J, et al. Enhanced thermoelectric performance in ductile Ag2S-based materials via doping iodine. Appl Phys Lett 2021;119:121905.

[21]

Ngoc Nam H, Yamada R, Okumura H, Nguyen TQ, Suzuki K, Shinya H, et al. Intrinsic defect formation and the effect of transition metal doping on transport properties in a ductile thermoelectric material α-Ag2S: a first-principles study. Phys Chem Chem Phys 2021;23:9773–84.

[22]

Wuliji H, Ma Y, Chen H, Wei T-R, Zhao K, Sun Y-Y, et al. Dynamical approach to the atomic and electronic structures of the ductile semiconductor Ag2S. J Chem Phys 2023;158:244109.

[23]

Wuliji H, Zhao K, Cai X, Jing H, Wang Y, Huang H, et al. Study of the defect chemistry in Ag2Q (Q = S, Se, Te) by first-principles calculations. Mater Today Phys 2023;35:101129.

[24]

Nam HN, Suzuki K, Masago A, Nguyen TQ, Shinya H, Fukushima T, et al. A first-principles study on the electrical conductivity of Ag2S1-xSex (x = 0, 0.25, 0.5): electron–phonon coupling. Appl Phys Lett 2022;120:143903.

[25]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15–50.

[26]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8.

[27]

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011;32:1456–65.

[28]

Jiang H, Gomez-Abal RI, Rinke P, Scheffler M. First-principles modeling of localized d states with the G W @ LDA + U approach. Phys Rev B 2010;82:045108.

[29]

Wu X, Ming C, Gao W, Shi J, Zhao K, Wang H, et al. Effect of liquidlike cations on electronic and defect properties of solid solutions of Cu2Te and Ag2Te. Phys Rev B 2022;105:195206.

[30]

Broberg D, Medasani B, Zimmermann NER, Yu G, Canning A, Haranczyk M, et al. PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators. Comput Phys Commun 2018;226:165–79.

[31]

Zimmermann NER, Horton MK, Jain A, Haranczyk M. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization. Front Mater 2017;4:34.

[32]

Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci 2013;68:314–9.

[33]

Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, et al. First-principles calculations for point defects in solids. Rev Mod Phys 2014;86:253–305.

[34]

Freysoldt C, Neugebauer J, Van de Walle CG. Fully Ab Initio finite-size corrections for charged-defect supercell calculations. Phys Rev Lett 2009;102:016402.

[35]

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simulat Mater Sci Eng 2010;18:015012.

[36]

Nelson R, Ertural C, George J, Deringer VL, Hautier G, Dronskowski R. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J Comput Chem 2020;41:1931–40.

[37]

Senthil Kumar V, Kumaran V. Voronoi cell volume distribution and configurational entropy of hard-spheres. J Chem Phys 2005;123:114501.

[38]

Pinsky M, Avnir D. Continuous symmetry measures. 5. The classical polyhedra. Inorg Chem 1998;37:5575–82.

[39]

Effmass D Whalley L. An effective mass package. J Open Source Softw 2018;3:797.

[40]

Lany S. Semiconductor thermochemistry in density functional calculations. Phys Rev B 2008;78:245207.

[41]

Doak JW, Michel KJ, Wolverton C. Determining dilute-limit solvus boundaries in multi-component systems using defect energetics: Na in PbTe and PbS. J Mater Chem C 2015;3:10630–49.

[42]

Buckeridge J. Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy. Comput Phys Commun 2019;244:329–42.

[43]

Yang S, Gao Z, Qiu P, Liang J, Wei T, Deng T, et al. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Adv Mater 2021;33:2007681.

[44]

Peng L, Yang S, Wei T-R, Qiu P, Yang J, Zhang Z, et al. Phase-modulated mechanical and thermoelectric properties of Ag2S1-xTex ductile semiconductors. J Materiomics 2022;8:656–61.

[45]

Li Z, Zhang J, Wang S, Dong Z, Lin C, Luo J. Low-temperature structure and thermoelectric properties of ductile Ag2S0.4Te0.6. Scripta Mater 2023;228:115313.

[46]

Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater 2008;7:105–14.

[47]

Toriyama MY, Qu J, Snyder GJ, Gorai P. Defect chemistry and doping of BiCuSeO. J Mater Chem A 2021;9:20685–94.

[48]

Gao H, Zhao K, Wuliji H, Zhu M, Xu B, Lin H, et al. Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance. Energy Environ Sci 2023;16:6046–57.

[49]

Puska MJ, Pöykkö S, Pesola M, Nieminen RM. Convergence of supercell calculations for point defects in semiconductors: vacancy in silicon. Phys Rev B 1998;58:1318–25.

[50]

Chen S, Yang J-H, Gong XG, Walsh A, Wei S-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys Rev B 2010;81:245204.

[51]

Zunger A, Wei S-H, Ferreira LG, Bernard JE. Special quasirandom structures. Phys Rev Lett 1990;65:353–6.

[52]

Qu J, Balvanz A, Baranets S, Bobev S, Gorai P. Computational design of thermoelectric alloys through optimization of transport and dopability. Mater Horiz 2022;9:720–30.

[53]

van de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad 2002;26:539–53.

Journal of Materiomics
Pages 1270-1278
Cite this article:
Wuliji H, Zhao K, Jing H, et al. Defect chemistry for extrinsic doping in ductile semiconductor α-Ag2S. Journal of Materiomics, 2024, 10(6): 1270-1278. https://doi.org/10.1016/j.jmat.2024.01.009

105

Views

1

Crossref

0

Web of Science

1

Scopus

Altmetrics

Received: 02 November 2023
Revised: 14 January 2024
Accepted: 21 January 2024
Published: 07 February 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return